
ZHR–R–0304

VTF3 – A Fast Vampir Trace File
Low-Level Management Library

Stephan Seidl

Dresden University of Technology
Center for High-Performance Computing

Postfach 01062 Dresden, Germany
seidl@zhr.tu-dresden.de

http://www.tu-dresden.de/zhr

November 17, 2003

Abstract. This document describes VTF3-1.37 for writing and reading
traditional Vampir [1] trace files. VTF3 is part of newer Vampir ver-
sions and manages the lowest level of the prime source channel there.
Developed in 2001, it can be used separately and freely. Except for some
records, being part of a research project, all the C-interfaces are defined
to be frozen. In addition to pure interface descriptions, the document
provides semantic background and gives a lot of hints so that, for ex-
ample, converter developers get the information they need to imagine
what Vampir expects as input. Besides their visualization, VTF3-style
all-in-one trace files are more and more often used to comfortably store,
process and interchange general temporal states and functions, with or
without a high degree of parallelism.

1 Introduction

Vampir 3.0 [2] supports two source types. These are the new STF (Structured
Trace File) type, which has been designed and implemented by Pallas GmbH,
and the traditional VTF (Vampir Trace File) type. VTF3 is the software to
handle the VTF branch. In 2001, VTF3 was developed from scratch to be a fast,
portable, tight and clear layer to cover all the VTF management requirements.
A lot of new records have been introduced, some of them to improve speed and
clarity only. On the other hand, VTF3 accepts the whole trace file history as
input. The files may be plain or compressed; compression/uncompression is done
on the fly between memory buffers using VTF3-ZLIB-1.1.4. VTF3-ZLIB-1.1.4
has been derived from zlib-1.1.4 by Jean-loup Gailly, Mark Adler and others.

Traditional Vampir VTF3-style all-in-one trace files are record-based and
are subdivided into two sections, being the declaration section on top and the
following event record section. All the record entries of each section have a global

2 Stephan Seidl

scope. Especially with respect to the declaration records, it is no longer allowed
to overwrite any prior defined one, even if the new record exactly reproduces
an old declaration. There is no reason to have two or more declaration records
carrying the same information. The records of the declaration section do not
have a timestamp; the records of the event record section have one.

A VTF may be sorted or unsorted. Unsorted files cannot directly be processed
by Vampir. An unsorted state should be flagged by an Unmerged record as the
absolutely first one. There is a special VTF3 application, called Vptmerge, by
Sven Bauer, which is able to merge sorted or unsorted VTF fragments to create a
sorted, all-in-one trace file readable by Vampir. Vptmerge can also be used to
change from one of the four VTF formats into another, although the legacy VTF
ASCII format is not a possible output option. These four VTF formats are the
Standard Binary Format , the Standard ASCII Format , the Fast ASCII Format
and the Legacy ASCII Format . All of them are portable, i.e., they can be moved
from one architecture to another without changes. The first three formats have
a file header on top, the Legacy ASCII Format has none. For the Unix file(1)
command, appropriate /etc/magic entries would look as described in table 1.

Table 1. /etc/magic (magic(5)) entries for file(1) version 3.27

0 string U\252\245ZBPVI Vampir Standard-Binary trace

0 string C\040SAVTF\n Vampir Standard-ASCII trace

0 string C\040SAVTF\r\n Vampir Standard-ASCII trace

0 string C\040FAVTF\n Vampir Fast-ASCII trace

0 string C\040FAVTF\r\n Vampir Fast-ASCII trace

Besides using Vptmerge, VTF fragments, being each of the same format,
can also be concatenated with the help of operating system utilities. File headers
within VTFs are recognized and automatically skipped by the VTF3 scanners.
However, under certain non-Unix operating systems, using the Standard Binary
Format , one has to ensure that all these copy actions are performed in binary
mode. The ASCII formats resist the usual changes, for example, the occurrence
of ^M-^J-sequences instead of single new-line characters.

The current version of Vptmerge, which is also based on VTF3-1.37, filters
out Unmerged records of any kind, removes declaration section record duplicates,
and sorts the records of this section group-wise according to table 2. Moreover,
it replaces some outmoded records by more efficient ones for significantly better
performance. Back to the trace file structure. An application, which wants to
create trace files ready for Vampir, perhaps uses the Vptmerge group sort
order, because this order is safe.

Except for the record type groups Defcpugrp and Defpatternshape, tagged
with (•) in table 2, the record sort order is irrelevant within the same group.
In contrast, the records of the groups with a (•) have to be sorted so that

VTF3 – A Fast Vampir Trace File Management Library 3

Table 2. The declaration section record type groups in safe order

1. Defversion 11. Defact 21. Defcommunicator
2. Defcreator 12. Defstate 22. Defmsgname
3. Defsyscpunums 13. Defact obsol (†) 23. Defglobalop
4. Defsyscpunames (†) 14. Defstate obsol (†) 24. Defredfunc obsol (†)
5. Defthreadnums 15. Defcpuregclass (†) 25. Defiofile
6. Defcpuname 16. Defclstrregclass (†) 26. Defkparreg
7. Defclstr (†) 17. Defsampclass 27. Defclkperiod
8. Defcpugrp (•) 18. Defcpureg (†) 28. Deftimeoffset
9. Defsclfile 19. Defclstrreg (†) 29. Defpatternshape (•)

10. Defscl 20. Defsamp 30. Defpattern

all the references are back references. Vptmerge takes this into account, too.
Declaration record types tagged with (†) are outmoded.

The records of the event section, being the second and last one after the
declaration section, carry a timestamp multiplier and have to be chronologically
sorted for Vampir. Timestamp multipliers are non-negative integer numbers
out of the interval [0, 1030]. Though they are passed through the interfaces as
C-language double types, their fractional part is filtered out by rounding to keep
the binary and ASCII formats in strict conformance to each other.

2 Writing Vampir Trace Files

Vampir trace files are principally created by so-called trace libraries. Since trac-
ing always changes the run-time characteristics of the researched subject, it is
crucial to keep the overhead losses as small as possible. Good trace libraries do
not need more than a few hundred clocks to pick up a timestamp together with
some performance counters and to rawly deposit all these data in a trace buffer.
If the trace buffer overflows, tracing may be switched off, or a flushing routine
writes its contents onto the disk. The latter operation may be done rawly or
translating the data into the final format. We touch on this topic here to clarify
the position of VTF3 inside a tracing environment. Even though VTF3-1.37 is
a fast software, it cannot be used to deposit program trace data in the buffer; it
should be used to bring out the raw trace buffer contents onto the disk, properly
formatted, to get the final Vampir input or appropriate fragments, respectively.
Fragments can be post-processed by hand or with the help of Vptmerge.

Hence, the layer on top of VTF3 will collect information needed to write all
the VTF records, one after another, and will release this information invoking the
VTF3 interfaces. Furthermore, this layer should control the size of the resulting
files. Without compression, handy trace files do not exceed 50 MB, but, of course,
Vampir visualizes files of several hundred megabytes without any problem as
long as one has enough main memory installed, e.g. 1 GB.

When VTF3-1.37 is used for creating trace files, the Vampir version has
to match, i.e., the VTF3 release number of this Vampir cannot be smaller

4 Stephan Seidl

than 1.37. One should have a look at the Handled by:-line of the Vampir

File.Tracefile Info display or should simply enter

strings ./vampir | grep vtf3

at a Unix/Linux command prompt.

#include <stddef.h>
#include <stdio.h>
#include "vtf3.h"

int main (void)
{

const char *outfilename = "mytracefile";
void *fcb;
int writeunmergedrecord, writtenchars;
size_t writtenbytes;

(void) VTF3_InitTables ();
fcb = VTF3_OpenFileOutput (outfilename, VTF3_FILEFORMAT_STD_ASCII,

writeunmergedrecord = 0);
if (fcb == 0) {

(void) printf ("Couldn’t open %s\n", outfilename);
return (127);
}

writtenchars = 8; /* file format header */
writtenbytes = (size_t) writtenchars * sizeof (char);
writtenchars = VTF3_WriteDefversion (fcb, VTF3_GetVersionNumber ());
writtenbytes += (size_t) writtenchars * sizeof (char);
writtenchars = VTF3_WriteDefcreator (fcb, "Stephan’s TraceLib");
writtenbytes += (size_t) writtenchars * sizeof (char);
/* Write all the other records. */
(void) VTF3_Close (fcb);
(void) printf ("Wrote %lu bytes\n", (unsigned long) writtenbytes);
return (0);
}

Fig. 1. Trace file creator skeleton

A program skeleton to create VTFs might look as depicted in figure 1. vtf3.h
is the header file which contains the VTF3 macros, types, prototypes and, last
but not least, further application examples. To prevent unintentional interfer-
ences, all of the externally visible symbols of the implementing VTF3 libraries
in themselves start with the substring "VTF3 ".

VTF3 needs to be initialized with respect to internal, statically allocated
tables. To do so, one has to invoke VTF3 InitTables() as the first call to the
API. This function can be executed multiple times, but, of course, only its first
execution, which is not thread-safe, does some initialization. VTF3 InitTables()
does not allocate any memory, it only sets up internal tables which are used by
all the other interfaces in a read-only manner. The next is an open statement.
The first argument to VTF3 OpenFileOutput() has to be a string which is used
as a name for the output file. If the regular expression ".\.[gG][zZ]$" matches
this file name, then compressed output is generated, whereby the compression
method is the same as one would get by the command gzip(1) called with -1 or
--fast, respectively. Sometimes, VTF3 does not have zlib support. To check

VTF3 – A Fast Vampir Trace File Management Library 5

whether this support is compiled in, the service function VTF3 HaveZlib() can
be invoked, which returns 1 in the case that the VTF3-ZLIB-1.1.4 code is on-
board, or 0, otherwise.

In this regard, a comment for using Vampir follows. If the Handled by:-line
of the File.Tracefile Info display shows that this Vampir comes with a
VTF3 version with zlib support, one should disable the appropriate external
converter with the help of the Preferences.Tracefile.External Converters
display. This does significantly improve the input performance. Because the
built-in zlib code is not 64-bit-clean, the size of compressed files cannot ex-
ceed the 32-bit limitations. Files without compression do not have this problem.

The second argument to VTF3 OpenFileOutput() determines the trace file
format. Possible values are VTF3 FILEFORMAT STD ASCII , VTF3 FILE-
FORMAT STD BINARY and VTF3 FILEFORMAT FST ASCII . The read-
able Standard ASCII Format is for debugging trace libraries etc. Upon creation,
this format is the slowest one, but, with VTF3, its speed got acceptable, too.
The Standard Binary Format is the fastest format which should be used for pro-
duction. The Fast ASCII Format is an experimental format without restrictions.
Even though the resulting files of this format are readable in a sense, their size
may be smaller than that of appropriate binary files. Furthermore, it may be
much faster than the Standard ASCII Format , because floating-point numbers
are carried using the so-called XY-representation which reads the bit sequence of
a floating-point number, after its translation into the IEEE-754 double-precision
little-endian format, as a two-element array of unsigned 32-bit integers. All of
the described trace file formats are accepted by Vampir.

If the third argument equals a non-zero value, then VTF3 OpenFileOutput()
creates an Unmerged record after the file header. In that case, the file has to
be post-processed, e.g. with the help of Vptmerge. For files which should be
ready for Vampir, the third argument is zero.

Upon successful completion, VTF3 OpenFileOutput() returns the address of
a so-called fcb (file control block). 0 is returned to indicate an open error. Testing
the fcb address against zero is an essential activity. The fcb itself has to be
left untouched. Its address is passed to many other interfaces in order to get
thread-safe, i.e. except for the first call of VTF3 InitTables(), the VTF3 API
is thread-safe as long as not more than one thread works with a particular fcb.
The maximum number of fcbs at the same time corresponds to the maximum
number of open files, see also getrlimit(2).

According to table 2, the first declaration record should be the Defversion
record. This record defines the version of the trace file format definition that
the VTF conforms to. VTF3 provides an appropriate number by the func-
tion VTF3 GetVersionNumber(). All of the record-writing routines return an
int value containing the number of written characters. These numbers can be
accumulated to ensure that the resulting files keep handy. For example, if the
file size exceeds some limit without having written all the records, one should
simply branch to the file close statement.

6 Stephan Seidl

In figure 1, the next record provides creator information. This could be the
name of any software, its version number, any date etc. If one does not have an
idea how to do that, the return value of VTF3 GetVersion(), being a statically
allocated string, can be plugged into the Defversion record interface.

After all the records have been written, the fcb-controlled device should be
released calling the function VTF3 Close(). This flushes the buffers, closes the
file and frees the memory. Normally, one fcb binds 2 MB of core space. This
value can grow up to 20 MB, depending on the size of the largest record.

2.1 More Declaration Section Records

This section individually describes important declaration records. With respect
to these declaration records, the situation is similar to the one in ‘true’ program-
ming languages, it is intricate and wrapped in some mystery.

Defsyscpunums The Defsyscpunums record critically determines the layout
of several Vampir displays, e.g. the global timeline. Exactly one record of this
type has to exist. It defines the maximum degree of parallelism which can be
visualized. From today’s point of view, the interface looks somewhat strange,
but, it has been defined in the past to handle Meta-Computers, too.

int VTF3 WriteDefsyscpunums (void *fcb,
int systemcpunumberarraydim,
const int *systemcpunumberarray);

Modern VTF3 applications put exactly one value onto the array systemcpu-
numberarray, being the maximum degree of parallelism. Hence, systemcpu-
numberarraydim should always equal 1. There are worthier records than this
one to define the structure of a system of computers.

With more than about 50 parallel event streams, there are two alternative
ways to go. First, for example, an application runs 1000 parallel processes and
the position is that the trace file has to contain them all. Then, one would
enter 1000 here and would have to claim the Vampir process filtering features
as selector while visualizing. The second approach is that the trace library is
an intelligent part of the particular application, being able to perform skilled
selections by itself. One representative of this kind is FMC [3]. The trace library
of FMC is an integral part which knows exactly what is going on. If the degree
of parallelism exceeds a redefinable number, e.g. 40, then an activity-dependent
selection policy is applied to find out the right candidates which are exclusively
allowed to write traces. In the trace file, all of the others are mapped onto one
dummy task which only takes up the messages between visible and invisible
members. Hence, FMC would not call the Defsyscpunums interface with a value
larger than 40. Finally, sequential applications invoke this interface with 1.

VTF3 – A Fast Vampir Trace File Management Library 7

Defthreadnums A VTF may contain one Defthreadnums record. This record
is useful if a multi-threaded MPI application is to be traced whereat messages
are sent and received by threads which have to be represented as individual task
objects, i.e. with an individual timeline each. For example, a message is sent
from process 1 to process 0. Thread 1 of process 0 may actually receive this
message because it was targeted on process 0, exacting on any thread of process
0. On the other hand, thread 1 of process 0 cannot obtain the correct sender,
i.e. it can obtain the sender process, but not the sender thread. Provided that
each thread has its own timeline, it is obvious that there is no way to write
a correct trace record for the message above. For that reason, Vampir always
draws message lines between processes, i.e. between the 0-thread timelines of
these processes, even though this might be in apparent contradiction to some
call stack information. Therefore, Vampir needs to know which thread belongs
to which process, and this is exactly what the Defthreadnums record carries.

int VTF3 WriteDefthreadnums (void *fcb,
int threadnumarraydim,
const int *threadnumarray);

threadnumarray is an array of the dimension threadnumarraydim. The dimen-
sion signifies the number of true processes. The array elements contain the indi-
vidual thread numbers for each process, in which *(threadnumarray+0) is the
number of threads running in process 0, *(threadnumarray+1) is the number
of threads running in process 1, and so on in appropriate order. The sum of all
array elements has to equal the sum of all the array elements provided by the
Defsyscpunums record. In the presence of the Defthreadnums record, Vampir

uses all the task-indexing numbers in a special manner which is described below.
Otherwise, Vampir takes these numbers as they are.

Defcpuname With restrictions, the default timeline task labeling can be in-
fluenced with the help of the Vampir Preferences.General display, i.e. with
the Process Name and Process Offset fields there. Full timeline task labeling
support is only provided by the VTF Defcpuname records. These records can
be used to assign arbitrary application-dependent names to the tasks of the
timelines. Especially if an intelligent trace library selects particular tasks for
tracing by itself, the real application task numbers and the numbers from the
default Vampir task numbering scheme cannot trivially be mapped onto each
other. Hence, this kind of trace libraries should completely define their own task
labeling. The appropriate VTF3 interface is

int VTF3 WriteDefcpuname (void *fcb,
unsigned int cpuid,
const char *cpuname);

With every call of the function VTF3 WriteDefcpuname(), one character string
cpuname is passed, i.e. Vampir’s default labeling of exactly one task can be over-
written whereat the particular task is selected by the unsigned integer cpuid.

8 Stephan Seidl

The parameter cpuid is used for several VTF3 interfaces and needs to be
explained. Traditionally, its value is one out of the interval

[0,
(∑i=systemcpunumberarraydim−1

i=0
systemcpunumberarrayi

)
− 1] , (1)

which means that cpuid+1 may vary from 1 up to the maximum degree of
parallelism, and cpuid is something like a plain task rank as it would be yielded
by the MPI function MPI Comm rank() when called with MPI COMM WORLD
as the communicator. But, the interval (1) only describes valid cpuid values in
the absence of any Defthreadnums record. In the presence of a prior defined
Defthreadnums record, the interpretation of cpuid totally changes, becoming
somewhat sophisticated. In that case, Vampir reads the parameter cpuid as

cpuid = 216 × threadid + processid . (2)

Applying (2), processid has to be any value out of the interval

[0, threadnumarraydim − 1] . (3)

Furthermore, if k denotes the zero-based process index, possible threadid values
would be such ones out of the interval

[0, threadnumarrayk − 1] . (4)

Summarizing here, together with the Defthreadnums record, the semantics of
the VTF3 parameter cpuid completely changes. Because of the applied thread
index encoding scheme, in that case, the resulting ASCII output looks quite ugly,
but, on the other hand, with this encoding scheme, it is easy to find the process
a particular thread belongs to.

Defcpugrp Looking retrospectively at the Vampir history, several approaches
for data grouping have been made. From today’s point of view, the approach
being associated with the Defcpugrp records is the most flexible one, and this
is the only approach which should be applied now. In principle, a Defcpugrp
record creates a named task group, subsuming one or more single tasks and/or
one or more prior defined task groups. For example, with the help of these
Defcpugrp records, trace file designers can bail the structure of the underlying
machinery. The current Vampir reflects this structure when perambulating the
Filters.Processes display. Furthermore, at least one Defcpugrp record is re-
quired to use the most recent records carrying performance counter information.

int VTF3 WriteDefcpugrp (void *fcb,
unsigned int cpugrpid,
int cpuorcpugrpidarraydim,
const unsigned int *cpuorcpugrpidarray,
const char *cpugrpname);

VTF3 – A Fast Vampir Trace File Management Library 9

The parameter cpugrpid is a unique group token being used to refer to this
group later. With respect to its value, the only restriction is that this value has
to be one out of the interval

[231, 232 − 1] . (5)

cpuorcpugrpidarray is an array of the dimension cpuorcpugrpidarraydim.
The dimension signifies the number of members of the group. The array elements
may contain cpuids or prior declared cpugrpids. The same members, i.e., cpuids
and/or cpugrpids, may also be used to declare other groups. Consequently, there
may be several trees beside each other, each represented by a group hierarchy,
which look at the machinery from different points of view. cpugrpname is the
name of the newly declared group.

Groups, which are defined to be used below in Defsamp/Samp records for
task-related performance counter information, typically do not contain cpugr-
pids, they only contain cpuids, i.e. they are flat. Alongside, the size of these
groups should not be too excessive to prevent performance degradations while
drawing/redrawing the Vampir Global Displays.Counter Timeline display.
On the other hand, groups defined to be used in Defsamp/Samp records for task-
group-related performance counter information typically only contain cpugrpids
as their members. Nevertheless, if task-related performance counter information
and task-group-related performance counter information should be juxtaposed
inside the same counter timeline, a mixed case is conceivable and possible. In
all of these cases, the order of the group members is significant, since Vampir

directly derives the layout of appropriate displays from the group contents.
Initially, Vampir comes up with a default group for the task selector (see

Filters.Processes display). If a trace file defines at least one group, then this
default group is the group with the largest group token. Otherwise, if the trace
file does not contain any group definition at all, Vampir uses the internally
created group Default as the default group with all tasks selected.

Defsclfile If one is going to deposit source code location information (SCL),
unique tokens sclfiletoken are to be defined, one after another, being associ-
ated with the source code file names sclfilename.

int VTF3 WriteDefsclfile (void *fcb,
int sclfiletoken,
const char *sclfilename);

The values for sclfiletokens are not subjected to any restriction so that hash-
table-based algorithms can be applied to derive unique tokens evaluating the file
names. Furthermore, it is a good idea to use relative file name paths instead of
absolute ones for sclfilename to keep a given project movable with respect to
its top-level directory position.

During a Vampir session, source code files can only be popped up if the
file name paths sclfilename, being plugged into the Defsclfile interface, are

10 Stephan Seidl

described relative to the path of the current working directory Vampir has been
invoked from. At least until now, this is not a bug, this is a feature.

In this document, the term Unique Token means that a token is only unique
with respect to other tokens of the same kind. Hence, a sclfiletoken here may
be unique, even though there is a scltoken (next paragraph) with exactly the
same value.

Defscl While the Defsclfile records above declare the SCL file tokens, the SCL
tokens themselves are declared by the Defscl records here, using the following
interface.

int VTF3 WriteDefscl (void *fcb,
int scltoken,
int sclarraydim,
const int *sclfiletokenarray,
const int *scllinepositionarray);

In principle, an SCL is a conglomeration of pairs, each consisting of a file
name and a line position inside this file. The file name is represented by a prior
declared file name token sclfiletoken. The line position with respect to this
file stands for itself. sclarraydim is the number of these pairs, i.e. the dimension
of the two input vectors. If k is assumed to be the zero-based pair index, then
*(sclfiletokenarray+k) contains the file name token of the k-th pair, and
*(scllinepositionarray+k) contains the appropriate line position. Entering
of more than one pair is possible here to dominate, for example, call hierarchy
situations with an invisible software layer between two visible ones, whereby
invisible means that, e.g. the source code is not available, i.e. it cannot be in-
strumented. The source code viewer of Vampir allows one to switch between
the different pairs, which are defined by one Defsclfile record, pressing the keys
U or D, respectively. U stands for Up, and D stands for Down. With respect to
the VTF3 interface, the level of the pair k is assumed to be lower than the level
of the pair k + 1. scltoken denotes a unique SCL token being subjected to

scltoken > VTF3 SCLNONE , (6)

where the symbol VTF3 SCLNONE is defined by the header vtf3.h.

Defact A Defact record is a state group record, consisting of a unique state
group token activitytoken and a state group name activityname. State group
tokens are small integers with

activitytoken > VTF3 NOACT . (7)

State group tokens have to be small because Vampir directly uses them as
indices for certain table-lookup operations, but the suppositionally sorted set of
all of the defined state group tokens of a VTF does not necessarily have to be
a dense integer number sequence. activityname is a name that the state group

VTF3 – A Fast Vampir Trace File Management Library 11

should be associated with. For example, the state group Blas could group all the
BLAS routines, i.e. a state itself would be a member of this subroutine collection
which is executed by the application. In Vampir, a state group is denoted by
the term Activity . Another commonly used term is State Class.

int VTF3 WriteDefact (void *fcb,
int activitytoken,
const char *activityname);

Trace file designers should know that, for Vampir, activities are one of the
most important selection categories. A lot of statistics displays are activity-
based, and, the activity , i.e. the state group a state belongs to, decides on the
color of a state, not the state itself. Perhaps Vampir 3.0 comes with prede-
fined colors for the state group names Application, Calculation, Communica-
tion, Flush, Highlight , I/O , Idle, MPI , MT , PVM , SHM and VT API , which,
of course, have to be defined by the VTF, too, if necessary. For other, personally-
defined state groups, the initial color is a randomly determined gray value being
redefinable with the help of the Preferences.Color Styles.Activities dis-
play. As with other changes, color modifications are also stored into files in the
${HOME}/.VAMPIR defaults directory. Hence, trace file designers will not always
create new state group name entries, forcing the visualizer to redefine colors as
the first action when examining a new trace file.

The pair activitytoken = VTF3 NOACT and activityname = "NOACT"
is internally reserved and naturally defined, and its items cannot be used here.
VTF3 NOACT or "NOACT", respectively, is uncolored.

Defstate A Defstate record declares a state denoting a named program section
which can be entered and left one or more times. Typically, states are subroutines
or large loops which should be examined. The appropriate interface is

int VTF3 WriteDefstate (void *fcb,
int activitytoken,
int statetoken,
const char *statename,
int scltoken);

activitytoken refers to a prior defined activity , i.e. a prior defined state group,
that the state should belong to. Again, statetoken is a unique state token which
is used later to refer to this state. As the state group tokens, for the same reason,
state tokens have to be small integers. In addition, state tokens are subjected to

statetoken > VTF3 NOSTATE . (8)

A state may not be a member of more than one state group, but, during a Vam-

pir session, a state can transiently change into another, perhaps newly, i.e. tran-
siently, created state group. In Vampir, a state is denoted by the term Symbol .
statename is a name the state should be associated with. All of the strings which

12 Stephan Seidl

are plugged into VTF3 interfaces should not be too long; some Vampir display
legends will look ugly otherwise. Especially for C++ programmers, this might
be a problem because their names are quite large, though these names may be
mangled. The state statetoken = VTF3 NOSTATE , statename = "NOACT",
belonging to the state group VTF3 NOACT , is internally reserved and defined,
and none of the latter items can be used here. Finally, the majority of the users
will invoke the VTF3 WriteDefstate() interface with VTF3 SCLNONE as argu-
ment to the last parameter scltoken.

Defsampclass Samples below are temporal functions which have to be recorded
and evaluated with the help of Vampir, too. Every sample exactly belongs to one
named sample class. The Defsampclass record binds a unique sample class token
sampleclasstoken, not being subjected to any other restriction, to a particular
sample class name sampleclassname. The corresponding VTF3 interface looks
as follows

int VTF3 WriteDefsampclass (void *fcb,
int sampleclasstoken,
const char *sampleclassname);

FMC [3], for example, uses one of the strings "Instructions", "L1Dcache",
"L1Icache", "L2Cache", "TLB", "DTLB" and "ITLB" as sample class name, de-
pending on a particular command line argument.

Defsamp To specify more properties, associated with samples below, there is
the following VTF3 interface.

int VTF3 WriteDefsamp (void *fcb,
int sampletoken,
int sampleclasstoken,
int iscpugrpsamp,
unsigned int cpuorcpugrpid,
int valuetype,
const void *valuebounds,
int dodifferentiation,
int datarephint,
const char *samplename,
const char *sampleunit);

sampletoken has to be a unique sample definition token, not subjected to further
restrictions. It is used to shorten later references to the set of properties which
is described here. sampleclasstoken is the token of the sample class that this
sample description belongs to. If the argument iscpugrpsamp differs from zero,
then the following argument cpuorcpugrpid is enforced to be a task group,
i.e. the argument cpuorcpugrpid is OR-ed with the task group bit VTF3 -
CPUGRP MASK before it is evaluated. This behavior is somewhat strange and

VTF3 – A Fast Vampir Trace File Management Library 13

is a heritage of the past. To avoid confusion, always pass 1 to iscpugrpsamp
and pass a prior defined cpugrpid group token to the cpuorcpugrpid argument,
even if a single task application has to be traced. For the contents of the group
here, it is a good idea to read once again the comments on the Defcpugrp record
on page 9.

Samples carry 64-bit unsigned integers or 64-bit floating-point data, whereby,
depending on the result of a run-time analysis, IEEE-754 double precision or
native Cray floating-point numbers are accepted by the interfaces. Appro-
priately, one of the constants, VTF3 VALUETYPE UINT or VTF3 VALUE-
TYPE FLOAT , has to be passed to valuetype, and the argument valuebounds
might be read as the address of an imaginary union valuebounds

union valuebounds {
st ruct {

uint64 t umin;
uint64 t umax;
} ubounds ;

st ruct {
float64 t fmin;
float64 t fmax;
} fbounds ;
} *valuebounds;

with certain minimum and maximum values filled into the right structure. If
these boundary values do not exist or if they are unknown, the constants

valuebounds->ubounds.umin = 0 and
valuebounds->ubounds.umax = (uint64 t)˜(uint64 t)0, or

valuebounds->fbounds.fmin = -1.0e+300 and
valuebounds->fbounds.fmax = +1.0e+300,

respectively, can be entered. All the VTF3 library routines replace floating-point
mantissae, being less than 10−300, by zero, and replace such ones being greater
than 10+300 by the value 10+300, even if on Crays. Furthermore, IEEE-754
double-precision patterns +NaN and +INF, for example, are supposed to be valid
floating-point numbers, which are larger than 10+300. All clipping operations
of this kind are prepared by bit manipulations so that floating-point exceptions
should never occur. Internally, the VTF3 library routines do not deal with 64-bit
integers. For strict X3J11 C89 conformance, eight-element character arrays and
two-element arrays of at least 32-bit integers are used instead, together with a
mechanism for endianess detection at run-time.

The argument dodifferentiation is used to decide whether the temporal
function, which is given as a set of points (samples), should interval-wise be
differentiated during the Vampir session (dodifferentiation!=0) or should
be shown as it is (dodifferentiation==0). For hardware performance counters,
any value dodifferentiation!=0 is recommended.

14 Stephan Seidl

The argument datarephint has to be initialized with one of the constants
VTF3 DATAREPHINT BEFORE , VTF3 DATAREPHINT POINT , VTF3 -
DATAREPHINT AFTER, or VTF3 DATAREPHINT SAMPLE . At the mo-
ment, VTF3 DATAREPHINT BEFORE is the only supported hint for Vampir.
Once implemented, the differences between VTF3 DATAREPHINT BEFORE
and the other values will be subtle and should be tested. VTF3 DATAREP-
HINT BEFORE is the right constant for hardware performance counter record-
ing, now and in the future.

The argument samplename is the address of a character string which de-
termines the name of the temporal function, and sampleunit determines its
physical unit. To enforce consistency at all, the physical unit might also directly
be appended to the samplename string, separated by a times sign or a slash char-
acter, whereas the sampleunit string is left empty, i.e., the latter string only
consists of a ’\0’-character. If dodifferentiation above differs from zero, the
unit string, or the function string, respectively, need to be lengthened by "/s".
The function will not be understood otherwise.

FMC [3], for example, uses the strings "FloatingPointInstructions/s",
"Instructions/s", "NormalizedL1DcacheMisses", "L1DcacheMisses/s",
"L1DcacheAccesses/s", "NormalizedL1IcacheMisses", "L1IcacheMisses-
/s", "L1IcacheAccesses/s", "NormalizedL2CacheMisses", "L2CacheMisses-
/s", "L2CacheAccesses/s", "TLBMisses/s", "NormalizedDTLBMisses", "D-
TLBMisses/s", "DTLBAccesses/s", "NormalizedITLBMisses", "ITLBMisses-
/s" and "ITLBAccesses/s" as sample names, depending on a particular com-
mand line argument. If a sample name starts with the substring "Normalized",
then the appropriate temporal function is an artificial one, ranging between 0
and 1, or a so-called derived counter, computed by the FMC on-board trace
library. It should be noted that some processors do not allow one to measure
Misses/s and {Hits/Accesses}/s at the same time. When detected, the FMC
trace library, for example, switches back to a Misses/s–only measurement case.
If there is more than one sample definition in a trace file, Vampir initially comes
up with the one being switched on, which has the smallest sampletoken value.

Defcommunicator MPI , for example, supports so-called collective commu-
nication operations. The group of participating processes is defined by their
communicator arguments. Vampir should also know the task members (cpuids)
of the communicators in use. The appropriate VTF3 interface is

int VTF3 WriteDefcommunicator (void *fcb,
int communicator,
int communicatorsize,
int tripletarraydim,
const unsigned int *tripletarray);

The parameter communicator denotes a unique token being subjected to

communicator ! = VTF3 NOCOMMUNICATOR .

communicatorsize signifies the number of tasks (cpuids) belonging to this com-
municator which cannot vary here. With respect to the parameter triplet-

VTF3 – A Fast Vampir Trace File Management Library 15

array, the address of an imaginary structure array cbounds could be plugged
in as argument.

struct {
unsigned int cllim;
unsigned int culim;
unsigned int cstep;
} cbounds [tripletarraydim];

This structure array would have to be initialized in such a way that the the fol-
lowing code fragment correctly prints. Even though the type of *tripletarray,
i.e. the type of the inner loop controlling variables, is unsigned, trace file design-
ers should have plenty of room to define their communicator members efficiently.

int i;
for (i = 0; i < tripletarraydim; i++) {

unsigned int cpuid;
for (cpuid = cbounds[i].cllim;

cpuid <= cbounds[i].culim;
cpuid += cbounds[i].cstep)

(void) printf ("Cpuid %u is member of the communicator\n", cpuid);
}

Fig. 2. Illustration of the communicator member definition

Defmsgname The Defmsgname interface allows the trace file designer to attach
a name string to a token pair consisting of a message type (tag) and a commu-
nicator token. By default, when displaying a message, Vampir only shows this
pair numerically.

int VTF3 WriteDefmsgname (void *fcb,
int msgtype,
int communicator,
const char *msgname);

In a message display, an additional name only appears if there is an appropriate
Defmsgname entry with the same message type and the same communicator
token, in which the special communicator token

communicator == VTF3 NOCOMMUNICATOR .

matches for all communicator tokens. Fortran-based applications may use the
MPI MPI Comm f2c() function to transfer Fortran communicator handles to
C communicator handles, which can directly be plugged in the Defmsgname
interface in many cases.

16 Stephan Seidl

Defglobalop Collective communication operations may have a name attached
to them. The appropriate interface is the following one.

int VTF3 WriteDefglobalop (void *fcb,
int globaloptoken,
const char *globalopname);

globaloptoken has to be a unique collective communication operation token,
not subjected to further restrictions. It is used to shorten later references to
the globalopname name string argument. Typical values to globalopname are
"MPI Barrier" and "AllToAll".

Defiofile To trace basic I/O or MPI I/O, used file names have to be associated
with unique file name tokens iofiletoken. These tokens are not subjected to
any restriction so that hash-table-based algorithms can be applied to derive
unique tokens evaluating the names. In displays, Vampir only shows the last
file name component, i.e. it cuts off all the leading components looking for usual
component separators.

int VTF3 WriteDefiofile (void *fcb,
int iofiletoken,
int communicator,
const char *iofilename);

For basic I/O, communicator has to be set to VTF3 NOCOMMUNICATOR,
whereas in case of MPI I/O, communicator should be the communicator to-
ken being associated with the MPI File Open() function call. This is the only
way Vampir can distinguish between basic and MPI I/O. Useful values to
iofilename are "output.dat", "shome:myfile" and "Host23:File12", where
the leading substring, up to the colon character, might be the abbreviated name
of a node. The strings are not at all necessarily the same ones as they are used
to open the file.

Defclkperiod Vampir needs a unit that all the unsigned-integer-like timestamp
multipliers, carried by the event section records, have to be multiplied by. This
unit is called clock period here, and it is the reciprocal number of ticks per
second of any crystal-controlled counter, or it is a virtual quantity only.

int VTF3 WriteDefclkperiod (void *fcb,
double clkperiod);

Due to a VTF3 implementation restriction, the argument to clkperiod should
not be too small, ensuring that the timestamp multipliers never exceed the value
1030. On the other hand, clkperiod should not be too large to assure a sufficient
resolution, i.e. to ensure that the quantization effects, caused by the fact that
the timestamp multipliers are rounded to the next integer, keep neglectable. In
our days, for typical performance analysis purposes, arguments to clkperiod
range between 10−10 and 10−6.

VTF3 – A Fast Vampir Trace File Management Library 17

Deftimeoffset In the absence of a Deftimeoffset record, which is the normal
situation in performance analysis, Vampir displays relative times according to

vampirtime = timestampmultiplier × clkperiod . (9)

This behavior completely changes if a Deftimeoffset record exists. Then, formula
(10) is applied instead of formula (9),

vampirtime = timestampmultiplier × clkperiod
+ timeoffset
+ ”Thu Jan 1 00:00:00 1970” ,

(10)

and Vampir displays absolute times at all. The Deftimeoffset record is useful
when accounting data of a parallel machine or other fiscal information have to be
visualized with the help of Vampir, for example. Typically, the function time(2)
is used in that case, together with the (double) cast operator.

int VTF3 WriteDeftimeoffset (void *fcb,
double timeoffset);

For historical reasons, even though the appropriate parameter is of the type
double, the argument to timeoffset is rounded to the next integer value and
has to be out of the interval [0, 232 − 1]. The unit of timeoffset is seconds.

Remaining Declaration Section Records The remaining declaration section
records Defsyscpunames, Defclstr , Defact obsol , Defstate obsol , Defcpuregclass,
Defclstrregclass, Defcpureg , Defclstrreg , Defredfunc obsol , Defkparreg , Defpat-
ternshape and Defpattern are not described in this document. Most of them are
outmoded; the latter three touch commercial or research matters.

2.2 Event Section Records

This section individually describes important event section records. All of the
records of the event section carry a timestamp, or more accurately, they carry
at least one unsigned-integer-like timestamp multiplier that the clock period is
multiplied by to get a correct time value inside Vampir. From now on, for short,
these unsigned-integer-like timestamp multipliers are simply called time. And,
once more, event section records have to be chronologically sorted, finally.
Table 3 shows the currently known VTF3 event section record types. Record
types tagged with (†) are outmoded. The one with the (•) should not be written
by the user. It has been defined to internally handle unrecognizable records or
such ones which obviously carry bad data.

18 Stephan Seidl

Table 3. The event section record types

1. Comment 9. Mutexrelease 17. Globalop
2. Downto 10. Samp 18. Kparregbegin
3. Upfrom 11. Cpuregval (†) 19. Kparregbarsum
4. Upto 12. Clstrregval (†) 20. Kparregend
5. Exchange (†) 13. Fileiobegin 21. Pattern
6. Exchange obsol (†) 14. Fileioend 22. Unrecognizable (•)
7. Srcinfo obsol (†) 15. Sendmsg
8. Mutexacquire 16. Recvmsg

Comment In general, comment records do not have any meaning for Vampir.
They have been introduced in the past to explain the trace files themselves. Their
time value ensures that the relative position of comments does not change while
sorting operations. With Vampir 3.0 [2], some comments got a special meaning.
Those ones, having a zero time and starting with the substring "ENV " at the
first position, are presented in the File.Tracefile Info display, too, where the
substring "ENV " is removed from the top.

int VTF3 WriteComment (void *fcb,
double time,
const char *comment);

With respect to the event record interfaces, the times which go in here are of
the type double. The ’\0’-terminated string that comment has to point to will
not be stripped, i.e. whitespace characters will be left as the are.

Downto, Upfrom, Upto State exchange records are the most important
records at all. The appropriate interfaces are the following ones.

int VTF3 WriteDownto (void *fcb,
double time,
int statetoken,
unsigned int cpuid,
int scltoken);

int VTF3 WriteUpfrom (void *fcb,
double time,
int statetoken,
unsigned int cpuid,
int scltoken);

int VTF3 WriteUpto (void *fcb,
double time,
int statetoken,
unsigned int cpuid,
int scltoken);

Vampir assumes that all the tasks of a parallel program, i.e. the timelines which
have to be visualized, initially start from the reserved state VTF3 NOSTATE .

VTF3 – A Fast Vampir Trace File Management Library 19

A Downto record flags that at the time time (page 17), the state of the task
cpuid (page 8) downwards changes to a new state statetoken (page 11). This
typically happens when a function is entered, i.e. the call stack dives into the
next lower level. scltoken denotes a prior defined source code location (SCL)
token (page 10), or VTF3 SCLNONE , if SCLs are not used.

Both the Upfrom and the Upto records perform the complementary opera-
tion. They are applied to flag state exchanges in an upwards direction. Upfrom
expects the token of the state being left as the statetoken argument, whereas
Upto assumes that statetoken contains the token of the target state. While
tracing, in most cases, the use of Upfrom records is simpler, since there is no
need to maintain a call/return stack at all. Nevertheless, for programs which ex-
ecute a longjmp(3) function, for example, some extra trace code is necessary to
ensure that the up/down state exchanges always keep balanced. Furthermore, it
is a common failure to forget to maintain the call/return stack during run-time
phases of a program, in which the tracing is temporarily switched off. Finally,
proper programs finish all of the traces returning to the state VTF3 NOSTATE ,
i.e. with an empty call/return stack for every cpuid.

If Vampir is used to visualize system accounting information, the activity-
name (page 10), or the activitytoken (page 10), respectively, can be associated
with any project ID string, and the statename (page 11), or the statetoken,
respectively, can be associated with any job ID string. Another scenario could
be to associate the activitytoken with a user ID string and the statetoken with
a job ID string.

Mutexacquire, Mutexrelease The following two interfaces support MUTual
EXclusion device tracing, for example, to trace multi-threaded codes using the
pthread mutex lock(3) and pthread mutex unlock(3) functions.

int VTF3 WriteMutexacquire (void *fcb,
double time,
unsigned int cpuid,
int enterstatetoken,
int leavestatetoken,
int leavestatetokenisupfrom,
double durationtimesteps,
int mutexsize,
const void *mutex,
int scltoken);

int VTF3 WriteMutexrelease (void *fcb,
double time,
unsigned int cpuid,
int enterstatetoken,
int leavestatetoken,
int leavestatetokenisupfrom,
double durationtimesteps,
int mutexsize,
const void *mutex,
int scltoken);

20 Stephan Seidl

They have been defined to visualize whether the flow of an application is sig-
nificantly disturbed by critical section execution. Each, the Mutexacquire and
the Mutexrelease record, cause a complete Downto–{Upfrom/Upto} state ex-
change operation, depending on the argument leavestatetokenisupfrom. If
leavestatetokenisupfrom differs from zero, this state exchange operation is of
the type Downto–Upfrom, or is of the type Downto–Upto, otherwise. Accord-
ingly, if leavestatetokenisupfrom differs from zero, leavestatetoken equals
enterstatetoken, or, if not, leavestatetoken has to be the state token that
the operation starts from. For the Mutexacquire record, enterstatetoken might
be associated with the function pthread mutex lock(), and, for the Mutexre-
lease record, enterstatetoken might be understood as the token for pthread -
mutex unlock(). Again, cpuid denotes the task, executing the lock/unlock oper-
ation. The argument durationtimesteps, being a particular unsigned-integer-
like timestamp multiplier value, too, describes the time being spent in pthread -
mutex lock() or pthread mutex unlock(), respectively. mutex might be the address
of the mutex variable and mutexsize its size. Using Pthreads, something special
has to be taken into account. The specification does not say anything about the
type pthread mutex t . Hence, pthread mutex t might be implemented as a struc-
ture, with or without gaps not necessarily being initialized. Another point is that
the contents of a mutex may vary during its life-time. To avoid appropriate prob-
lems, i.e., to ensure that mutex is always correctly recognized, mutexes should be
tokenized and the tokens should be used instead of the variables themselves. Use-
ful token strings could be created from any unified virtual address, which points
to the particular mutex object, lengthened by the IPV4/IPV6 node address. Mu-
tex tokenization is quite uncomfortable, of course, but it is safe. Vampir does
not do more than checking mutexes against each other for equality.

Samp The interface described here is used to carry the values of one or more
temporal functions, being called samples, as these values have been picked up
at the same time time each.

int VTF3 WriteSamp (void *fcb,
double time,
unsigned int cpuorcpugrpid,
int samplearraydim,
const int *sampletokenarray,
const int *samplevaluetypearray,
const void *samplevaluearray);

The argument samplearraydim contains the number of different samples this
record carries. Since every carried sample may have its own definition (page
12), the particular sample tokens are passed through the integer array sample-
tokenarray. On the other hand, each Defsamp record above is associated with
one group (argument cpuorcpugrpid on page 12) that this definition is only
valid for. Furthermore, the Samp record argument cpuorcpugrpid here needs
to be a member of such a group. Hence, since there is only one possible value

VTF3 – A Fast Vampir Trace File Management Library 21

cpuorcpugrpid in a Samp record, only such samples can be carried together,
which belong to a Defsamp definition with a cpuorcpugrpid value, containing
this Samp record argument cpuorcpugrpid as a member.

The values, which have to be loaded onto the integer array samplevalue-
typearray, have to be the same as the ones, one has specified with the Defsamp
records belonging to the appropriate elements of sampletokenarray, i.e. the
sample types have to match. Accordingly, with respect to the parameter sample-
valuearray, the address of an imaginary union array samplevalue could be
plugged in as argument, having loaded the data either onto the unsigned integer
type members, or onto the floating-point type ones.

union {
uint64 t usamplevalue ;
float64 t fsamplevalue ;
} samplevalue [samplearraydim];

Typically, for hardware performance counters, the Samp argument cpuorcpu-
grpid is a particular cpuid belonging to a flat group (page 9). samplearraydim
may range between 2, being the valid minimum for all known processors with
hardware performance counters, and 7, being the value for Hitachi’s Sr8000.
Furthermore, all of the elements of the samplevaluetypearray are typically set
to the constant VTF3 VALUETYPE UINT , and, the array samplevaluearray
is filled with data of the type uint64 t .

Fileiobegin, Fileioend The following two interfaces for basic I/O or MPI I/O
work in pairs. Fileiobegin records the beginning of an I/O operation, Fileioend
records its end. Accordingly, the time argument to Fileiobegin has to be the
time when functions as fread (3) or fwrite (3), for example, are called and the
time argument to Fileioend has to be the one when these functions finish. File
open and close operations do not play a role here; they are handled with the
help of the state exchange records above.

int VTF3 WriteFileiobegin (void *fcb,
double time,
unsigned int cpuid,
int fileiotype,
int iofiletoken,
int bytescopied,
int scltoken);

int VTF3 WriteFileioend (void *fcb,
double time,
unsigned int cpuid,
int fileiotype,
int iofiletoken,
int bytescopied,
int scltoken);

22 Stephan Seidl

The arguments cpuid, fileiotype, iofiletoken and bytescopied are exactly
the same for one Fileiobegin/Fileioend pair belonging to the same I/O operation,
Vampir ignores all mismatching records of this type. With respect to the cpuid
argument, proper trace libraries always use the correct value. On the other hand,
lazy implementations may only use the processid instead (see eqn. (2) at page
8), i.e. the cpuid value belonging to the zero thread of the same process.

Possible values for fileiotype are VTF3 FILEIOTYPE READ and VTF3 -
FILEIOTYPE WRITE . The argument to iofiletoken is a prior defined to-
ken (page 16). bytescopied denotes the number of bytes being read/written
from/onto the I/O medium. Formatted I/O, as it is typically applied for the
standard I/O streams, needs some extra code to determine the number of trans-
mitted bytes, and this code does not have anything to do with the design of
these trace records here.

Sendmsg, Recvmsg The Sendmsg and Recvmsg interfaces have been designed
to trace basic send/receive operations of applications using the message-passing
paradigm. Mainly, MPI has influenced the rich set of interface parameters, but,
of course, PVM and Cray SHMEM are well supported, too.

int VTF3 Sendmsg (void *fcb,
double time,
unsigned int sender,
unsigned int receiver,
int communicator,
int msgtype,
int msglength,
int scltoken);

int VTF3 Recvmsg (void *fcb,
double time,
unsigned int receiver,
unsigned int sender,
int communicator,
int msgtype,
int msglength,
int scltoken);

Sendmsg records the beginning of a message transfer, Recvmsg records its end.
Accordingly, the time argument to Sendmsg has to be the time when a function
as MPI Send(), for example, is called, and the time argument to Recvmsg has
to be the one when MPI Recv(), for example, finishes.

The arguments sender, receiver, communicator and msgtype are exactly
the same for one Sendmsg/Recvmsg pair belonging to the same message trans-
fer operation. With respect to the sender/receiver arguments, proper trace
libraries always use the correct values. On the other hand, lazy implementations

VTF3 – A Fast Vampir Trace File Management Library 23

may only use the processids instead (see eqn. (2) at page 8), i.e. sender/receiver
values belonging to the zero thread of the appropriate processes.

The communicator argument may have been defined (page 14) or not. Vam-

pir simply takes communicator as a magic number, which has to match while
looking for the appropriate Recvmsg record entry, examining all the records
of the receiver stream, which normally carry a larger time value than the
current Sendmsg record entry. The argument msgtype denotes a message type
(tag). It may or may not occur in a prior defined Defmsgname record (page 15).
msglength is the number of bytes being transmitted, which does not need to be
the same at the sender and the receiver side.

MPI, for example, allows one to use so-called wildcard operands to describe
some data. A similar mechanism is not implemented with Vampir. Hence, all
the data going into these interfaces have to be resolved properly, which needs
some extra code.

Finally, it is necessary to have synchronized clocks for all the tasks, being
involved in a message-passing program, i.e. the resulting offsets between all these
clocks do not disturb as long as they do not exceed the minimal message trans-
mission time. Oftentimes, the latter condition is not fulfilled at cluster-based
systems, and the amount of extra code, working around this situation, is im-
portant. For example, FMC [3] uses a general software approach, which takes
one minute execution time at all, to locally determine the two parameters for a
linear hardware clock correction with sufficient precision, and it should be noted
that, because of the tree algorithms, it is not a problem having 103 CPUs on the
run.

Globalop The Globalop interface is for collective communication operations as
they are commonly used with MPI, for example.

int VTF3 Globalop (void *fcb,
double time,
int globaloptoken,
unsigned int cpuid,
int communicator,
unsigned int rootcpuid,
int bytessent,
int bytesreceived,
double durationtimesteps,
int scltoken);

The time argument describes the local time the collective communication opera-
tion started. The argument durationtimesteps, being an unsigned-integer-like
timestamp multiplier value, too, describes the local time being spent in the col-
lective operation. globaloptoken is a prior defined collective communication
operation token (page 16), which is associated with the name of the collective
communication operation.

24 Stephan Seidl

Again, with respect to the cpuid/rootcpuid arguments, proper trace li-
braries always use the correct values. On the other hand, lazy implementations
may only use the processids instead (see eqn. (2) at page 8), i.e. cpuid/rootcpuid
values belonging to the zero thread of the appropriate processes.

While other records may have a communicator argument which is defined or
not, the Globalop interface always needs a defined one (page 14). What at this
moment keeps is a question one has to ask here. What should the contents of
communicator in case of multi-threaded MPI be, for example, the correct cpuid
values (see eqn. (2) at page 8), if used, or the appropriate processids only. The
current practice is that communicators only contain processids, i.e. the cpuid
values belonging to the zero thread of the appropriate processes.

Furthermore, if a particular collective communication operation does not
define a rootcpuid parameter, an invalid value has to be used to flag that. With
respect to further Vampir developments, the following value seems to be safe

invalidcpuid =
(∑i=systemcpunumberarraydim−1

i=0
systemcpunumberarrayi

)
, (11)

which, probably, will never be used for anything else (ref. to page 6 and eqn.
(1) at page 8). To explain the parameters bytessent and bytesreceived, an
example should be discussed. We assume that the processes 0, 1, 2 and 3 per-
form an MPI Bcast() operation, in which 0 is the rootcpuid, broadcasting 4
bytes. Then, the bytessent argument belonging to process 0 is 4, clearly, and
the bytesreceived arguments of all the others are 4, too. The bytesreceived
argument for the rootcpuid 0 is also 4, because MPI Bcast() also sends to it-
self, theoretically, at least. The non-rootcpuid processes do not send anything,
and this does not mean that they send 0 bytes here. MPI allows one to send or
receive 0 bytes. If a process or thread does not send or receive anything, then the
appropriate arguments have to be negative; otherwise, inside Vampir, the inter-
pretation with respect to the character of a particular collective communication
operation may fail.

Remaining Event Section Records The remaining event section records
Exchange, Exchange obsol , Srcinfo obsol , Cpuregval , Clstrregval , Kparregbegin,
Kparregbarsum, Kparregend and Pattern are not described in this document.
Most of them are outmoded, some touch commercial or research matters.

3 Controlling and Service Interfaces

The following interface has already been explained on page 4.

void VTF3 InitTables (void);

VTF3 – A Fast Vampir Trace File Management Library 25

The following interface has already been explained on page 4.

void *VTF3 OpenFileOutput (const char *outputfilename,
int outputfileformat,
int writeunmergedrecord);

If the third argument equals a non-zero value, then VTF3 OpenFileOutput()
creates an Unmerged record after the file header. Another way to create this
record is to let the writeunmergedrecord argument be zero and call the fol-
lowing function instead, i.e. the Unmerged record can also be written by hand.
Keep in mind that the Unmerged record has to be the absolutely first one of a
file.

int VTF3 WriteDefunmerged (void *fcb);

Instead of opening the record output to write it onto a file, the record output
can also be opened to process it inside the memory. The appropriate interface
looks as follows.

void *VTF3 OpenMemoryOutput (int outputfileformat);

Again, possible values for the argument outputfileformat are VTF3 FILE-
FORMAT STD ASCII , VTF3 FILEFORMAT STD BINARY and VTF3 -
FILEFORMAT FST ASCII . VTF3 OpenMemoryOutput() returns the address
of an fcb (file control block). The fcb itself has to be left untouched. If
opened with VTF3 OpenMemoryOutput() instead of VTF3 OpenFileOutput(),
the records cannot be written with the

int VTF3 Write... (void *fcb, ...);

interfaces, they have to be created with the help of appropriate ‘composers’

VTF3 rec t *VTF3 Compose... (void *fcb, ...); .

Composers expect the same arguments as the ‘writers’. On the other hand,
instead of returning the number of written characters, composers return the
address of a so-called rcb (record control block). The rcb itself belongs to the
VTF3 API and should only be read. The returned rcb address keeps valid as
long as no further composer is invoked with the same fcb. The type of the rcb is
VTF3 rec t which is defined in vtf3.h.

typedef const struct {
int type;
int numchars;
const char *record;
} VTF3 rec t;

26 Stephan Seidl

#include <stdio.h>
#include <stddef.h>
#include "vtf3.h"

int main (void)
{

const char *outfilename = "mytracefile";
const unsigned char formatheaders [] [8] = VTF3_HEADER_ALL_INIT;
int fileformat = VTF3_FILEFORMAT_STD_ASCII;
FILE *fp;
size_t writtenbytes;
void *fcb;
VTF3_rec_t *rcbaddress;

fp = fopen (outfilename, "wb");
if (fp == 0) {

(void) printf ("Couldn’t open %s\n", outfilename);
return (127);
}

(void) fwrite (&formatheaders[fileformat][0], sizeof (char), 8, fp);
writtenbytes = 8 * sizeof (char); /* file format header */
(void) VTF3_InitTables ();
fcb = VTF3_OpenMemoryOutput (fileformat);
rcbaddress = VTF3_ComposeDefversion (fcb, VTF3_GetVersionNumber ());
if (fileformat == VTF3_FILEFORMAT_STD_BINARY)

(void) fwrite (rcbaddress->record, sizeof (char),
(size_t) rcbaddress->numchars, fp);

else
(void) fprintf (fp, "%s\n", rcbaddress->record);

writtenbytes += (size_t) rcbaddress->numchars * sizeof (char);
rcbaddress = VTF3_ComposeDefcreator (fcb, "Stephan’s TraceLib");
if (fileformat == VTF3_FILEFORMAT_STD_BINARY)

(void) fwrite (rcbaddress->record, sizeof (char),
(size_t) rcbaddress->numchars, fp);

else
(void) fprintf (fp, "%s\n", rcbaddress->record);

writtenbytes += (size_t) rcbaddress->numchars * sizeof (char);
/* Compose and write all the other records. */
(void) VTF3_Close (fcb);
(void) fclose (fp);
(void) printf ("Wrote %lu bytes\n", (unsigned long) writtenbytes);
return (0);
}

Fig. 3. Trace file creator skeleton to understand the composers

The structure member type is a magic number which is associated with the
record type. These numbers are defined by the macros beginning with the sub-
string "VTF3 RECTYPE " in vtf3.h. Because they occur in thousands of existing
binary trace files, these magic numbers have never been changed. The meaning
of the other members gets clear with the help of the program skeleton in fig. 3,
which exactly produces the same output as the example in fig. 1 at page 4.
In binary format, the structure member record is the complete record. In both
ASCII formats, the new-line delimiter ^J, which is normally part of the ASCII
records, too, is replaced by a terminating ’\0’-character, i.e. the new-line de-
limiter has to be written by hand in fig. 3.
The following two interfaces have been designed for Vptmerge. VTF3 GetDef-
RecTypeArrayDim() returns the number of existing declaration section records,

VTF3 – A Fast Vampir Trace File Management Library 27

while the Unmerged record is not taken into account. Vptmerge evaluates this
value to allocate an integer array which is used as the argument for VTF3 Get-
DefRecTypeArray(). When VTF3 GetDefRecTypeArray() is back, this integer
array contains the record type magic numbers of the declaration section records
in a particular order so that Vptmerge can obtain information on how to sort
them. Hence, the sort order of the declaration section records, being produced
by Vptmerge, is determined by the VTF3 code, not by Vptmerge.

int VTF3 GetDefRecTypeArrayDim (void);

void VTF3 GetDefRecTypeArray (int *defrecordtypes);

The function VTF3 GetRecTypeArrayDim() returns the number of existing
records in total. Applications evaluate this value to allocate memory which is
used in connection with some other VTF3 interfaces.

int VTF3 GetRecTypeArrayDim (void);

VTF3 GetRecTypeArray() stores the record type magic numbers of all existing
records onto the integer array, recordtypes is pointing to. The user has to
accept that these numbers are stored in any unknown order.

void VTF3 GetRecTypeArray (int *recordtypes);

VTF3 GetCopyHandlerArray() stores the VTF3 Write...-function addresses of
all existing records onto the array, copyhandlers is pointing to. The user can
be sure, that, for each k, *(recordtypes+k) and *(copyhandlers+k) belong to
the same record.

void VTF3 GetCopyHandlerArray (VTF3 handler t *copyhandlers);

VTF3 DebugHandler() invokes the exit(3) system function with the argument
127 after the string "VTF3: VTF3 DebugHandler() invoked\n" has been printed.
Take note that the type of VTF3 DebugHandler() matches VTF3 handler t .

int VTF3 DebugHandler (void *firsthandlerarg, ...);

The next is an open function for reading from a file. The first argument to
VTF3 OpenFileInput() has to be a string which is used as name for the input
file. If the regular expression ".\.[gG][zZ]$" matches this file name, then,
while reading, the file contents is passed through an uncompressor filter, using
zlib, before it is processed. Of course, this can only happen, if zlib support
is compiled in. Furthermore, it should be noted that zlib switches into the
transparent mode, if it does not understand the input. Because the built-in
zlib code is not 64-bit-clean, the size of compressed files cannot exceed the
32-bit limitations. Files without compression do not have this problem.

28 Stephan Seidl

void *VTF3 OpenFileInput (const char *inputfilename,
const VTF3 handler t *handlers,
void * const *firsthandlerargs,
int substitudeupfrom);

The second argument to VTF3 OpenFileInput() is an array of pointers to so-
called record handler functions. This needs some background. While later reading
the file, its contents is completely scanned and parsed by certain VTF3 rou-
tines to assemble record-related argument lists, which are passed to appropriate
functions of the user, being the handlers for the particular record types. The
record-related argument lists are assumed to be the same ones as for the record
writers VTF3 Write... . As with the VTF3 Write...-functions, the user record
handlers have to return an integer value which is checked to be non-negative. A
negative value from a user record handler terminates the whole application. One
difference exists. While the VTF3 Write...-functions always wait for a valid fcb
as the first argument, associated with an output file, the user record handlers
here may have individual first arguments which are explained later.

The user has to define a handler for every existing record, i.e. the array,
handlers is pointing to, should be large enough to store VTF3 GetRecType-
ArrayDim() elements of the type VTF3 handler t . The place, inside this array,
where the handler for the record with a particular record type magic number
has to be stored, is the one with the same index that this record type magic
number occupies in recordtypes above. More simply, it is required that for
each k, *(recordtypes+k) and *(handlers+k) belong to the same record.

In practice, four different cases are of interest. First, a particular handler
function pointer is initialized with the value (VTF3 handler t) 0 . Then, while
later reading, all the records of this type are silently ignored. Secondly, a han-
dler function pointer is initialized with the value VTF3 DebugHandler (page
27). Then, while later reading, the function VTF3 DebugHandler() will not be
invoked. A message is printed instead, which says that the occurrence of the
appropriate record would lead to a VTF3 DebugHandler() call, before the ap-
plication is terminated. Hence, the function VTF3 DebugHandler() only exists
to have a valid address, which some VTF3 routines can test against. Third,
a particular record handler function pointer is initialized with the appropri-
ate VTF3 Write...-function, which needs the (VTF3 handler t) cast operator.
Then, while later reading, all records of this type are copied onto an opened file.
From now on, it should be clear why the function VTF3 GetCopyHandlerArray()
(page 27), which stores all the VTF3 Write...-function addresses onto an array,
has its name. From the point of view of the record handlers, the VTF3 Write...-
functions are nothing else than copying handlers, copy handlers for short. The
last case is the one, a handler function pointer is initialized with the address of
a user-defined function.
The third argument to VTF3 OpenFileInput() is an array of (void *)-pointers.
It has to be initialized so that the k-th record handler function can be in-
voked with *(firsthandlerargs+k) as the first argument. For user-defined
functions, *(firsthandlerargs+k) typically represents the address of a com-

VTF3 – A Fast Vampir Trace File Management Library 29

munication control block which may or may not contain fcb-addresses. Even if
the array element *(handlers+k) has been initialized with (VTF3 handler t)0 ,
*(firsthandlerargs+k) should get a value, (void *)0 , for example.

If the last argument, substitudeupfrom, differs from zero, then, while read-
ing, all Upfrom-records (page 18) are replaced by appropriate Upto-records.
Vampir itself always opens the input devices with substitudeupfrom=1. All
other applications should open them with substitudeupfrom=0.

Upon successful completion, VTF3 OpenFileInput() returns the address of
an fcb. 0 is returned to indicate an open error. Testing the fcb address against
zero is an essential activity.

Two more functions might be interesting here, VTF3 WriteUnrecognizable()
and VTF3 ComposeUnrecognizable().

int VTF3 WriteUnrecognizable (void *fcb,
double lastvalidtime,
int numberofunrecognizablechars,
int typeofunrecognizablerecord,
const char *unrecognizablerecord);

VTF3 rec t *VTF3 ComposeUnrecognizable (void *fcb,
double lastvalidtime,
int numberofunrecognizablechars,
int typeofunrecognizablerecord,
const char *unrecognizablerecord);

Of course, nobody would use them to create trace file records, but taken as
handlers for erroneous input parts, they do a good job. An error-flagging Com-
ment record is produced, being helpful for debugging. lastvalidtime is the
time value of the last correct event section record, or 0, if there was none be-
fore. numberofunrecognizablechars is the dimension of the bad area with the
start address unrecognizablerecord. If the type of the damaged record could
be determined, it is given by typeofunrecognizablerecord, otherwise, the pa-
rameter has the value VTF3 RECTYPE UNRECOGNIZABLE .

VTF3 ReadFileInput() is one of the functions which process the input after
opening with VTF3 OpenFileInput(). Once invoked, the user does not get back
the control up to the end of the file. The input is scanned and parsed to call the
user-defined record handler functions, one after another. VTF3 ReadFileInput()
returns the number of read bytes.

size t VTF3 ReadFileInput (void *fcb);

VTF3 ReadFileInputLtdBytes() is similar to VTF3 ReadFileInput(). Here, the
amount of bytes, which is read by one call, can be limited with the help of
the argument bytestoberead. The returned value, the number of read bytes
in effect, is only less than the value of this argument, if the end of the file has
been reached. In case of reading compressed input, there is a problem. For some
reasons, bytestoberead is internally rounded up to 2 MB, approximately.

30 Stephan Seidl

size t VTF3 ReadFileInputLtdBytes (void *fcb,
size t bytestoberead);

VTF3 ReadFileInputLtdRecs() allows one to limit the number of records which
are read by one call. The returned value, the number of read records in effect,
is never larger than the value of the argument recordstoberead. The returned
value may be less than recordstoberead, if the end of the file has been reached.
In any order, all functions, VTF3 ReadFileInput(), VTF3 ReadFileInputLtd-
Bytes() and VTF3 ReadFileInputLtdRecs(), can be used to process the same
input stream.

int VTF3 ReadFileInputLtdRecs (void *fcb,
int recordstoberead);

VTF3 OpenMemoryInput() has been designed to read trace files, or parts of
them, respectively, from the memory. This function is similar to VTF3 Open-
FileInput() (page 27). The first argument is not a file name, it is a file format in-
stead. Possible values are VTF3 FILEFORMAT STD ASCII , VTF3 FILEFOR-
MAT STD BINARY and VTF3 FILEFORMAT FST ASCII . The returned fcb
is always valid.

void *VTF3 OpenMemoryInput (int inputfileformat,
const VTF3 handler t *handlers,
void * const *firsthandlerargs,
int substitudeupfrom);

VTF3 ReadMemoryInput() belongs to VTF3 OpenMemoryInput(). The file con-
trol block address fcb is the one, VTF3 OpenMemoryInput() has returned. Once
invoked, beginning at src, VTF3 ReadMemoryInput() reads size bytes and
processes them assuming the trace file format inputfileformat, being the first
argument to VTF3 OpenMemoryInput(). src may contain zero, one or more
trace records. VTF3 ReadMemoryInput() can be executed multiple times.

size t VTF3 ReadMemoryInput (void *fcb,
const void *src,
size t size);

QueryFormat() is for all kinds of fcb-controlled (opened) devices. It returns the
currently used trace file format. QueryFormat() always returns VTF3 FILE-
FORMAT STD ASCII , VTF3 FILEFORMAT STD BINARY or VTF3 FILE-
FORMAT FST ASCII . Because of the following circumstances, this might be a
problem. The Legacy ASCII Format , being no longer created, does not have a
file format header on top. If there is not a known file format header on top of a
file, then this file is processed by the Standard ASCII Format parser, operating
in legacy mode. Hence, to internally invoke the Standard ASCII Format parser,
VTF3 FILEFORMAT STD ASCII is returned by QueryFormat() if the format
cannot be recognized finding a valid header. This is a bad point. Trying to read

VTF3 – A Fast Vampir Trace File Management Library 31

the executable /bin/sh as a trace file, for example, this cannot be avoided, but,
fortunately, the Standard ASCII Format parser is strong enough to dominate in
such a situation.

int VTF3 QueryFormat (const void *fcb);

VTF3 Close() is the function to close an fcb-controlled device. It flushes the
buffers, closes the file, if one has been opened, and frees the memory.

void VTF3 Close (void *fcb);

Putting all the discussed open, write/compose/read and close functions into
table 4, their dependencies on each other should be clear.

Table 4. Matching open, write/compose/read and close functions

Open Matching Write/Compose/Read Close

VTF3 OpenFileOutput() VTF3 Write...() VTF3 Close()

VTF3 OpenMemoryOutput() VTF3 Compose...() VTF3 Close()

VTF3 OpenFileInput() VTF3 ReadFileInput() VTF3 Close()
VTF3 ReadFileInputLtdBytes()
VTF3 ReadFileInputLtdRecs()

VTF3 OpenMemoryInput() VTF3 ReadMemoryInput() VTF3 Close()

Sometimes, VTF3 does not have zlib support. To check whether this support
is compiled in, the service function VTF3 HaveZlib() can be invoked, which
returns 1 in case that the VTF3-ZLIB-1.1.4 code is on-board, or 0, otherwise.
VTF3 HaveZlib() is the only function which can be used without a prior call of
VTF3 InitTables().

int VTF3 HaveZlib (void);

VTF3 GetVersion() returns a pointer to a statically allocated string which de-
scribes the VTF3 version. It is derived from the static rcsid string at run-
time. VTF3-1.37 with VTF3-ZLIB-1.1.4, for example, yields "TUD/ZHR vtf3
1.37 2003/11/25 18:23:15 with zlib 1.1.4".

const char *VTF3 GetVersion (void);

VTF3 GetVersionNumber() returns an integer value which describes the VTF3
version number. It is derived from the static rcsid string at run-time. VTF3-
1.37, for example, yields 30010037.

int VTF3 GetVersionNumber (void);

32 Stephan Seidl

4 Application Examples

The first application example implements a commonly used function with the
name QueryFormat(), returning one of the VTF3 file format magic numbers for
the not necessarily open file, filename is pointing to. It uses the VTF3 inter-
face VTF3 QueryFormat() which always returns VTF3 FILEFORMAT STD -
ASCII , VTF3 FILEFORMAT STD BINARY or VTF3 FILEFORMAT FST -
ASCII . In addition, QueryFormat() may also return VTF3 FILEFORMAT UN-
DEFINED , if the file with filename cannot be opened.

/* Begin of Application Example 1. */

#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include "vtf3.h"

int QueryFormat (const char *filename)
{
int nrectypes, substitudeupfrom, fileformat;
VTF3_handler_t *handlers;
void **firsthandlerargs, *fcb;

/* Initialize VTF3. */
(void) VTF3_InitTables ();

/* How many different record types do exist ? */
nrectypes = VTF3_GetRecTypeArrayDim ();

/* Allocate two auxiliary arrays, one for the user record
handler function pointers and one for the first arguments to
the user record handler functions. */

handlers = (VTF3_handler_t *) malloc ((size_t) nrectypes *
sizeof (VTF3_handler_t));

firsthandlerargs = (void **) malloc ((size_t) nrectypes *
sizeof (void *));

if (handlers == 0 || firsthandlerargs == 0) {
(void) printf ("No more memory\n");
(void) exit (127);
}

/* We shall not read anything, but, ‘VTF3_OpenFileInput()’
will copy both arrays into dark places.
Make Purify and Valgrind happy. */

(void) memset (handlers, 0,
(size_t) nrectypes * sizeof (VTF3_handler_t));

(void) memset (firsthandlerargs, 0,
(size_t) nrectypes * sizeof (void *));

VTF3 – A Fast Vampir Trace File Management Library 33

/* Open the input device. */
fcb = VTF3_OpenFileInput (filename, handlers, firsthandlerargs,

substitudeupfrom = 0);

/* Check the returned file control block address. */
if (fcb != 0) {

/* It is valid, ask for the file format. */
fileformat = VTF3_QueryFormat (fcb);
/* Close the input device. */
(void) VTF3_Close (fcb);
}

else
/* The file could not be opened,

the file format keeps undefined. */
fileformat = VTF3_FILEFORMAT_UNDEFINED;

/* Free the auxiliary vectors. */
(void) free (firsthandlerargs);
(void) free (handlers);

/* Give back the determined value. */
return (fileformat);
}

/* End of Application Example 1. */

The second application example is an artificial one. It shows a lot of VTF3
features. The reader should test himself. The imaginary job which has to be
done here is the following one. Read a trace file of any known format in portions
of 50000 bytes, approximately, and translate this file into the Standard Binary
Format. Any found Defunmerged records have to be ignored. Furthermore, in
all Sendmsg records, cpuid 12 should be replaced by cpuid 14. Additionally, the
first Sendmsg record with the global maximum value for msglength has to be
printed onto stdout , in ASCII format, of course. Any found Srcinfo obsol records
should abort the execution. Finally, if any unrecognizable record is found in the
input file, this record has to be processed by the standard Unrecognizable record
handler, which translates it into an error-flagging Comment record. Moreover, if
the input file is of the Standard ASCII Format, each unrecognizable record has
to be passed to an extern ‘alien’ ASCII record parser.

/* Begin of Application Example 2. */

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "vtf3.h"

34 Stephan Seidl

/* Define a communication control block type for later use.
It will be passed to some user installed record handlers. */

typedef struct {
void *fcboutfile;
void *fcboutmemory;
void *fcbin;
int maxmsglength;
char *sendmsgrecord;
} ccb_t;

/* Two true user record handlers have to be installed here,
one for the Sendmsg records and one for the Unrecognizable
records. Declare their prototypes.
Let the compiler perform strict type checking. */

VTF3_DCL_SENDMSG (static, MySendmsgHandler);
VTF3_DCL_UNRECOGNIZABLE (static, MyUnrecognizableHandler);

/* Declare the extern ‘alien’ ASCII record parser. */
extern int MyAlienParser (void *anydata, int numchars,

const char *record);

/**/

/* Now define the first user handler for the Sendmsg records.
Basically, all record handlers have to give back a
non-negative integer, otherwise, the processing will be
aborted after return. */

static int MySendmsgHandler (void *ccbvoid, double time,
unsigned int sender,
unsigned int receiver,
int communicator, int msgtype,
int msglength, int scltoken)

{
ccb_t *ccb;
int writtenbytes;
VTF3_rec_t *record;

/* Prevent excessive casting. */
ccb = (ccb_t *) ccbvoid;

VTF3 – A Fast Vampir Trace File Management Library 35

/* Check for ‘cpuid’ translation.
Keep in mind, ‘sender’ and ‘receiver’ are located in the
stack area. Therefore, they can be modified without any
problem. In general, it is not allowed to destroy any data
coming in here. */

if (sender == 12)
sender = 14;

if (receiver == 12)
receiver = 14;

/* Invoke the predefined copy handler to put the modified record
onto the binary output stream. Remember, all the predefined
copy handlers want to see the control block of an opened
output device. */

writtenbytes = VTF3_WriteSendmsg (ccb->fcboutfile, time, sender,
receiver, communicator,
msgtype, msglength,
scltoken);

/* Now check the message lengths. */
if (ccb->sendmsgrecord != 0 && msglength <= ccb->maxmsglength)
/* There is stored any Sendmsg record with a larger or equal

‘msglength’ value than this record has.
We are ready to go out from here. */

return (writtenbytes);

/* O.k., we have to store this Sendmsg record in ASCII format.
VTF3_ComposeSendmsg() is used as the record assembler.
VTF3_ComposeSendmsg() also needs an opened output device,
just for the buffers. But, at least because of the different
formats, this output device cannot be the same as for
VTF3_WriteSendmsg().
Hence, another output device has to be used. */

record = VTF3_ComposeSendmsg (ccb->fcboutmemory, time, sender,
receiver, communicator, msgtype,
msglength, scltoken);

/* Really store now.
Pay attention, the memory of data, coming in here from VTF3,
is recycled after return. Therefore, one has to save all the
things which should survive. */

ccb->maxmsglength = msglength;
if (ccb->sendmsgrecord != 0)
(void) free (ccb->sendmsgrecord);

36 Stephan Seidl

/* Pay attention, because of the file format
which will be specified later, ‘record->record’ is
a ’\0’-terminated printable ASCII string. */

ccb->sendmsgrecord = (char *) malloc ((strlen (record->record)
+ 1) * sizeof (char));

if (ccb->sendmsgrecord == 0) {
(void) printf ("No more memory\n");
(void) exit (127);
}

(void) strcpy (ccb->sendmsgrecord, record->record);

/* Ready to leave this function. */
return (writtenbytes);
}

/**/

/* Now define the second user handler
for all Unrecognizable records. */

static int MyUnrecognizableHandler (void *ccbvoid,
double lastvalidtime,
int numberofunrecognizablechars,
int typeofunrecognizablerecord,
const char *unrecognizablerecord)

{
ccb_t *ccb;
int writtenbytes, rc;

/* Prevent excessive casting. */
ccb = (ccb_t *) ccbvoid;

/* Firstly, invoke the predefined copy handler which puts an
appropriate error-flagging comment record onto the binary
output stream. Remember, all the predefined copy handlers
want to see the control block of an opened output device. */

writtenbytes = VTF3_WriteUnrecognizable (ccb->fcboutfile,
lastvalidtime,
numberofunrecognizablechars,
typeofunrecognizablerecord,
unrecognizablerecord);

VTF3 – A Fast Vampir Trace File Management Library 37

/* Pass the Unrecognizable record to the ‘alien’ ASCII record
parser, if the input file is of the Standard ASCII Format. */

if (VTF3_QueryFormat(ccb->fcbin) == VTF3_FILEFORMAT_STD_ASCII) {
/* Pay attention, ‘unrecognizablerecord’

is not ’\0’-terminated. */
rc = MyAlienParser ((void *) 0, numberofunrecognizablechars,

unrecognizablerecord);
if (rc < 0)
/* This would abort the trace file processing. */
writtenbytes = rc;

}

/* Ready to leave this function. */
return (writtenbytes);
}

/**/

/* Now define the main program. */
int main (int argc, char **argv)
{
ccb_t ccb;
int writeunmergedrecord, nrectypes, *recordtypes, i,
substitudeupfrom;

VTF3_handler_t *handlers;
void **firsthandlerargs;
size_t bytesread, bytestoberead;

/* Initialize VTF3. */
(void) VTF3_InitTables ();

/* Open a binary output device. */
ccb.fcboutfile = VTF3_OpenFileOutput ("binfile",

VTF3_FILEFORMAT_STD_BINARY,
writeunmergedrecord = 0);

if (ccb.fcboutfile == 0) {
(void) printf ("Couldn’t open %s\n", "binfile");
return (127);
}

/* Open an ASCII in-core output device. */
ccb.fcboutmemory =
VTF3_OpenMemoryOutput (VTF3_FILEFORMAT_STD_ASCII);

38 Stephan Seidl

/* Continue the communication control block initialization. */
ccb.maxmsglength = 0;
ccb.sendmsgrecord = 0;

/* Again, how many different record types do exist ? */
nrectypes = VTF3_GetRecTypeArrayDim ();

/* Allocate three auxiliary arrays, one for record type magic
numbers, one for the record handler function pointers
and one for the first arguments to the record handler
functions. */

recordtypes = (int *) malloc ((size_t) nrectypes *
sizeof (int));

handlers = (VTF3_handler_t *) malloc ((size_t) nrectypes *
sizeof (VTF3_handler_t));

firsthandlerargs = (void **) malloc ((size_t) nrectypes *
sizeof (void *));

if (recordtypes == 0 || handlers == 0 || firsthandlerargs == 0){
(void) printf ("No more memory\n");
return (127);
}

/* Store the record type magic numbers onto the appropriate
array. Pay attention, the caller does not know their ordering
scheme. */

(void) VTF3_GetRecTypeArray (recordtypes);

/* Store the predefined copy handler function pointers onto my
array. */

(void) VTF3_GetCopyHandlerArray (handlers);

/* What follows, this is the final handler table setup. */
for (i = 0; i < nrectypes; i++) {

if (recordtypes[i] == VTF3_RECTYPE_DEFUNMERGED) {
/* Defunmerged records have to be suppressed. Install 0 as

the handler. Resetting ‘firsthandlerargs[i]’ makes Purify
and Valgrind happy. */

handlers[i] = 0;
firsthandlerargs[i] = 0;
continue;
}

VTF3 – A Fast Vampir Trace File Management Library 39

if (recordtypes[i] == VTF3_RECTYPE_SENDMSG) {
/* Replace the predefined copy handler by our own one,

do not forget to redirect the first argument, too. */
handlers[i] = (VTF3_handler_t) MySendmsgHandler;
firsthandlerargs[i] = &ccb;
continue;
}

if (recordtypes[i] == VTF3_RECTYPE_SRCINFO_OBSOL) {
/* To check whether anybody has created a trace file

containing Srcinfo_obsol records in the past, install
the builtin debug handler. This handler will never be
invoked, it only represents a valid machine address which
can internally be compared to. Resetting
‘firsthandlerargs[i]’ makes Purify and Valgrind happy. */

handlers[i] = VTF3_DebugHandler;
firsthandlerargs[i] = 0;
continue;
}

if (recordtypes[i] == VTF3_RECTYPE_UNRECOGNIZABLE) {
/* Replace the predefined copy handler by our own one, do

not forget to redirect the first argument, too. Pay
attention, since ‘ccb.fcbin’ is not known up to now, it
keeps uninitialized.
At the moment, this is not a problem. */

handlers[i] = (VTF3_handler_t) MyUnrecognizableHandler;
firsthandlerargs[i] = &ccb;
continue;
}

/* All the other handlers keep the predefined copy handlers,
directly seeing the opened output device control block. */

firsthandlerargs[i] = ccb.fcboutfile;

/* End of loop. */
}

40 Stephan Seidl

/* Open the input device, correctly installing the handlers.
Furthermore, a value for ‘ccb.fcbin’ is returned so
that ‘ccb’ initialization can be completed, being late but
early enough with respect to the handlers. */

ccb.fcbin = VTF3_OpenFileInput ("anyfile", handlers,
firsthandlerargs,
substitudeupfrom = 0);

if (ccb.fcbin == 0) {
(void) printf ("Couldn’t open %s\n", "anyfile");
return (127);
}

/* Free the auxiliary arrays. */
(void) free (firsthandlerargs);
(void) free (handlers);
(void) free (recordtypes);

/* Now push the operation
to portion-wise process the input file contents. */

do bytesread = VTF3_ReadFileInputLtdBytes (ccb.fcbin,
bytestoberead = 50000);

while (bytesread != 0);

/* Print now, if something is to be done. */
if (ccb.sendmsgrecord != 0) {
(void) printf ("%s\n", ccb.sendmsgrecord);
(void) free (ccb.sendmsgrecord);
}

/* Close all devices. */
(void) VTF3_Close (ccb.fcbin);
(void) VTF3_Close (ccb.fcboutmemory);
(void) VTF3_Close (ccb.fcboutfile);

return (0);
}

/* End of Application Example 2. */

A final comment. As long as it is clear what Vampir wants to see, writing
trace files is easy, reading and processing them, too. Nevertheless, the second
application example should be understood as a case to study how to go. It
seems that it is a good idea to extract the code from this document to perform
personal tests. Good luck.

VTF3 – A Fast Vampir Trace File Management Library 41

5 Trademark Acknowledgement

All trademarks are property of their respective trademark owners.

References

1. Nagel W.E., Arnold A., Weber M., Hoppe H-C., and Solchenbach, K.:
VAMPIR: Visualization and Analysis of MPI Resources. Supercomputer 63, Vol. 12,
No. 1, pp. 69-80, 1996.

2. Pallas GmbH: VAMPIR 3. http://www.pallas.com
3. Seidl S., Nagel W.E., and Brunst.H.: The Future of HPC at SGI: Early Ex-

perience with SGI SN-1. in Proceedings of the Sixth European SGI/Cray MPP
Workshop (Sep 7-8, 2000, Manchester, UK), B.J.Jesson, ed., pp. 209-219, 2000.

