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Abstract. While parallelization has made important progress during the last few years,
the sequential performance relatively stagnates, although we have taken the 1 GHz hur-
dle. Moreover, we have to put tens of processors into action to be competitive with vector
machines. Once an application is analyzed by means of performance tools like Vampir [3],
the user is typically faced with some loops which consume most of the CPU time. To
improve loop performance, the present paper assumes that it is just enough in many
cases to apply a generalized blocking technique with respect to the size of one primary
cache line, or two of them occasionally. Its primary goal is to maximize the number of
user operations divided by the expected value for the number of drawn primary cache
lines. Another experience is that the inner loop body has to be well-stuffed and has to
have as little memory write accesses as possible. More than 50 Fortran/C example loops
have been investigated so far, and essential results are presented. The performance in
speed correlates with results which we have seen for routines in the BLAS libraries on
different platforms. Finally, because of its clear goals, this procedure can also easily be
taught.

1 Introduction

The present investigations were mainly motivated by some experimental results
from [5]. As an example, figures 1-4 show the matrix multiplication performance
on T3E-600 and Origin2000. The different curves in each figure represent all the
possible permutations with respect to loop nest level exchanges, i.e. they come
from loop interchanges. In case that the output matrix is stored in transposed
form, the results look similarly. At first we can see here that both machines run
with more than half the peak performance when executing Fortran code. Further-
more, the left-sided speeds do not depend as strongly on cache size limitations
as the right-sided ones do. Finally, loop interchanges do not change the results
with Fortran on T3E-600. Putting all these facts together, a primal consequence
is that high speeds are really possible on cache based systems with RISC proces-
sors, even if the caches are very small. Accordingly, loop-tuning transformations
here should try to gain peak performance.

One more result comes from [4]. For table 1, the existence of an infinitely fast
processor has been presupposed, which executes sign changes on floating-point
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Fig. 1. Fortran-coded matrix multiplication
on T3E-600 with streams off
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Fig. 2. C-coded matrix multiplication
on T3E-600 with streams off
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Fig. 3. Fortran-coded matrix multiplication
on 195-MHz Origin2000
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Fig. 4. C-coded matrix multiplication
on 195-MHz Origin2000

Table 1. Sign change performance limits caused by the
Origin2000 memory hierarchy level the data reside on

Mnemonic Level MFLOPS

in-register 0 peak ?
on-chip cache 1 peak ?

SL cache 2 75.5
home memory 3 20.3
same corner 4 14.5

neighbor corner 5 13.6
next but one corner 6 12.9

spatial diagonal 7 12.2

data without paying attention to the possibility of accelerating this task by means
of suitable interventions, i.e. the processor does nothing but sit and wait for the
arrival of incoming data. For peak performance, table 1 suggests that we have to
maximize the primary on-chip cache hit rate mainly, whereas a big SL cache only
increases the ground speed .

To do so, there are a lot of possible transformations. They can be found in [2] and
[6], for example. The problem remaining for the user is to figure out which of them
are the right ones. To predict the result of a particular loop transformation with
respect to its cache behavior, the present paper uses a merit function described
in the following section.
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2 On the Merit Function

The scalar merit function f is defined by the number of inner loop user operations
divided by the expected value for the number of drawn primary cache lines due
to the access to all operands there. f is proportional to the speed, seen from the
point of view of the memory accesses, i.e. it is proportional to the really observed
speed as long as we are far from the processor’s peak performance. One knows
that the latter condition is very often fulfilled on cache based RISC systems. On
the other hand, of course, near the peak performance, the real speed goes into
saturation, so that a simple correlation with f cannot exist any longer.

for (i = 0; i < n; i += 1) {

for (j = 0; j < n; j += 1) {

for (k = 0; k < n; k += 1) {

c[i][j] += a[i][k] * b[k][j]; /* u1=2 */

/* w1=0 w2=1/m w3=1 */

} } } (1)

Illustratively, (1) shows the initial situation for the matrix multiplication. The
number of user operations inside the inner loop is u1 = 2. The probabilities for
drawing a new primary cache line are w1 = 0, w2 = 1/m, and w3 = 1, respectively.
m should be the number of floating-point operands that a primary cache line can
hold which typically equals 4. Furthermore, n→∞ has been assumed. Hence, f
can be obtained to f = f0 = u1/(w1 +w2 +w3) = 2m/(m+ 1). (2) would be the
result after inner loop unrolling, where n is supposed to be even.

for (i = 0; i < n; i += 1) {

for (j = 0; j < n; j += 1) {

for (k = 0; k < n; k += 2) {

c[i][j] += a[i][k + 0] * b[k + 0][j]; /* u1=2 */

/* w1=0 w2=1/m w3=1 */

c[i][j] += a[i][k + 1] * b[k + 1][j]; /* u2=2 */

/* w4=0 w5=1/m w6=1 */

} } } (2)

Since (2) yields the same value for f as (1) does, inner loop unrolling is of no
effect here, at least with respect to the access patterns. These things change with
(3) being the j-loop unrolling case.

for (i = 0; i < n; i += 1) {

for (j = 0; j < n; j += 2) {

for (k = 0; k < n; k += 1) {

c[i][j + 0] += a[i][k] * b[k][j + 0]; /* u1=2 */

/* w1=0 w2=1/m w3=1 */

c[i][j + 1] += a[i][k] * b[k][j + 1]; /* u2=2 */

/* w4=0 w5=0 w6=1/m */

} } } (3)

a[i][k] is reused (w5 = 0), and the expensive access to b[k][j + 0] (w3 = 1)
is followed by a unit-stride one (w6 = 1/m). In fact, w6 differs from 0, even w3

equals 1. As shown in figure 5, this comes from the statistical treatment of several
alignment situations. w3, w6, w3ν , and w6ν are the appropriate probabilities.
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Fig. 5. Treatment of alignment situations in (3)

As a result, one gets f = f2 = 2qm/(m + q), assuming that q is the unroll
factor. For q > 1, g2 = f2/f0 = q(m+ 1)/(m+ q) is always greater than 1, hence
we should have an observable speedup from now on. Finally, the outer loop is
unrolled.

for (i = 0; i < n; i += 2) {

for (j = 0; j < n; j += 2) {

for (k = 0; k < n; k += 1) {

c[i + 0][j + 0] += a[i + 0][k] * b[k][j + 0]; /* u1=2 */

/* w1=0 w2=1/m w3=1 */

c[i + 0][j + 1] += a[i + 0][k] * b[k][j + 1]; /* u2=2 */

/* w4=0 w5=0 w6=1/m */

c[i + 1][j + 0] += a[i + 1][k] * b[k][j + 0]; /* u3=2 */

/* w7=0 w8=1/m w9=0 */

c[i + 1][j + 1] += a[i + 1][k] * b[k][j + 1]; /* u4=2 */

/* wa=0 wb=0 wc=0 */

} } }
(4)

(4) goes on to improve in performance according to f = f3 = 2q2m/(m+ 2q− 1)
and g3 = f3/f0 = q2(m + 1)/(m + 2q − 1). For example, with q = 4 and m = 4,
the predicted speedup is g3 = 7.27 compared with g2 = 2.50 for (3).

Summarizing here, in particular cases, the defined merit function can easily be
determined. Since most of the existing computers are cache based systems, this
function helps to estimate the effect of the different loop transformations de-
scribed in literature.

3 The Favored Sequence of Code Transformations

[6] is very helpful for a brief description of the loop code transformation sequence
favored here. Of course, [6] must be read from the point of view of scalar optimiza-
tion. As a result, one should get completely re-rolled code with a small number of
fat loops, whereby inner loops should have unit-stride as well as non-unit-stride
accesses. After that, unrolling is applied which is controlled by the value of the
function f from above. Finally, all the non-scalar accumulators, if any, should ex-
plicitly be replaced by scalar ones, and, perhaps, other scalar optimization should
follow.
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4 Two Examples

The inner loop of the first example from real life shows (5). This example is
a level-2 type problem, combining a vector and a triangular matrix. Identifiers
which begin with j are integers, and the ones beginning with p are pointers. f,
as the first letter, denotes floating-point data. One gets f = f10 = 2m/(m+ 1).

for (j0 = 0; j0 < j1; j0++)

f0 += *(p0 + j0) * *(p1 + ((j2 - j0) * j0 >> 1)); (5)

(6) shows the well-stuffed inner loop after an optimization. As in (5), one has
unit-stride vector accesses, whereas the triangular matrix is accessed group-wise
now. f is obtained to f = f11 = 2qm/(m+q), as for (3). Assuming 4 floating-point
numbers per cache line again, (6) should be 10

3
times faster than (5). Moreover,

(6) should work at 2
3

of the theoretical speed which one would get for q →∞.

for (j3 = 0; j3 < j4; j3++) {

f0 += *(p2 + j3) * *(p3 + ((j5 - j3) * j3 >> 1) + 0);

f1 += *(p2 + j3) * *(p3 + ((j5 - j3) * j3 >> 1) + 1);

f2 += *(p2 + j3) * *(p3 + ((j5 - j3) * j3 >> 1) + 2);

f3 += *(p2 + j3) * *(p3 + ((j5 - j3) * j3 >> 1) + 3);

f4 += *(p2 + j3) * *(p3 + ((j5 - j3) * j3 >> 1) + 4);

f5 += *(p2 + j3) * *(p3 + ((j5 - j3) * j3 >> 1) + 5);

f6 += *(p2 + j3) * *(p3 + ((j5 - j3) * j3 >> 1) + 6);

f7 += *(p2 + j3) * *(p3 + ((j5 - j3) * j3 >> 1) + 7);

} (6)

All the memory accesses are read-only and the accumulations can happen in
registers. Therefore, a compiler should have plenty room for optimization. Figures
6 and 7 represent the appropriate results. The Fortran and the C case are based on
(5), their performances equal on both machines. The Advanced case here means C
language according to (6). Unfortunately, like the second one, too, this example
does not have a corresponding BLAS implementation. While T3E-600 follows
acceptably the theory, the acceleration on Origin2000 is too small, mainly caused
by its big SL caches, i.e. the multiply used vector does not get lost completely
because of inner loop activities. Finally it should be denoted that the calculations
to one curve point started always with empty caches.
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Fig. 6. Level-2 type performance on
T3E-600 with streams off
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The second example is a level-3 type problem. Its inner loop looks exactly like the
inner loop (5), although it combines a rectangular and a triangular matrix. (7)
is the result of an optimization. n is one of the problem dimensions, with n�1.
The rectangular matrix is accessed by way of four unit-stride memory streams .
The triangular matrix access group size was chosen to be half of the one of (6),
because each of the group members is used here four times. Basically, it is much
easier to optimize a level-3 type problem than a lower type one, on the other
hand, if we have a level-3 type subproblem in our algorithm, then we should like
to see peak performance there.

for (j6 = 0; j6 < j7; j6++) {

f0 += *(p4 + n * 0 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 0);

f1 += *(p4 + n * 1 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 0);

f2 += *(p4 + n * 2 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 0);

f3 += *(p4 + n * 3 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 0);

f4 += *(p4 + n * 0 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 1);

f5 += *(p4 + n * 1 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 1);

f6 += *(p4 + n * 2 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 1);

f7 += *(p4 + n * 3 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 1);

f8 += *(p4 + n * 0 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 2);

f9 += *(p4 + n * 1 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 2);

fa += *(p4 + n * 2 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 2);

fb += *(p4 + n * 3 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 2);

fc += *(p4 + n * 0 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 3);

fd += *(p4 + n * 1 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 3);

fe += *(p4 + n * 2 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 3);

ff += *(p4 + n * 3 + j6) * *(p5 + ((j8 - j6) * j6 >> 1) + 3);

} (7)

(7) yields f = f21 = 2q2m/(m + 2q − 1), accidentally, this is the same value as
for (4). Again, if we assume 4 floating-point numbers per cache line, (7) should
be 80

11
≈ 7.27 times faster than (5). This value cannot significantly be improved,

although the theoretical acceleration is unlimited with q → ∞. For example, an
acceleration of 16.84, i.e. an unroll factor q = 8 would need 82 = 64 floating-point
registers here. Figures 8 and 9 show the appropriate measurements which are
satisfying at all.
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5 Conclusion

Once detected, the effect of hot-spots consisting of level-2 or higher level loop
nests can be reduced by replacing these pieces of code by highly optimized and,
at the same time, portable sequences, even if there are no appropriate BLAS
implementations. Not only during tuning loop controlled operations, the behav-
ior of cache based systems can be modeled with the help of the described merit
function above. The theoretical and experimental results with hand-tuned codes
are in agreement with [1, page 76]. Because of the small block size which is typ-
ically used here (micro-blocking), accesses to indirectly referenced arrays do not
produce fundamental problems; one does not need more than a certain amount
of additional integer registers. Carefully selected unroll levels do allow the com-
piler to save some registers for its own purposes. Interestingly, but not shown
here, codes like the described ones also yield good speedups on new Intel proces-
sor based machines, although those CPUs have a very small register set. On the
other hand, more than 500 MFLOPS have been observed on a 200-MHz POWER-
3 workstation. Finally, it seems that there is no way of accelerating level-1 type
loops without special hardware facilities, e.g. on the one hand the automatically
but only upwards working T3E Streams and on the other hand the non-blocking
prefetch instructions of the MIPS processor being more flexible but needing ini-
tiation by the user. And, of course, optimizing strategies for cache based systems
differ completely from these for vector computers.
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