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Abstract

While the T3E is very well established as a highly parallel machine in many compute intensive
environments, large Origin2000 sites still have to optimize their usage profile to get effective
cycles for parallel codes even for moderate numbers of processors. The paper compares T3E
and Origin2000 systems, highlighting some details with respect to parallel programming and
runtime behavior of appropriate applications. The goal is not to favor one system over
the other, but to give recommendations how to design applications which are able to run
efficiently on both architectures.
Users are mainly faced with two differences between both systems. First, on a T3E a parallel
application is statically parallel from the beginning. In case of the Origin2000, an application
gets parallel during execution time when the user has control. Second, once started on a T3E,
a parallel application is always running as fast as possible. On an Origin2000, this does only
happen under certain circumstances. The paper will give some background about these facts
and will demonstrate the strong dependence of the runtime behavior of parallel programs on
different runtime situations. Comparative performance illustrations of both machines will
color the overall picture of the merging worlds.

1 Introduction

A few months ago, Dresden University of Technology (TU Dresden) has ordered a SGI/CRAY
SN-1 machine. The system will be shipped in the second half of 1999. Part of the contract
is to deliver a T3E beforehand. Since this will be a 300 MHz model, a lot of measurements
have not only been done for the T3E-900. On the other hand, the TU Dresden is the largest
German Origin2000 site with, over all, 56 MIPS R10k processors, 18 GBytes memory, about
300 GBytes disks, and, of course, a 21-monthed exciting story of run.

With release 6.5, the IRIX operating system comes now with a version of Miser which can
also handle MPI-parallelized jobs. This means that now the task scheduler holds certain
information which allow to recognize the tasks of a MPI-parallelized application as a group
which is to be served as an entirety. In fact, this is very encouraging because all the prerequi-
sites are finally fulfilled to run MPI-based parallel applications efficiently under normal batch
conditions, too. The merged machine of the future will have essential characteristics of the
Origin2000 concept. Nevertheless, the IRIX operating system is to be gained upon the level
a user sees on a T3E, but, of course, without loosing the flexibility of an Origin2000.
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On a T3E, there is no fight for resources while a job is running on the application nodes, except
for pushing a packet through the connecting wires. On the Origin2000 and its successors,
respectively, this should also be true in case of Miser-controlled jobs. All the other load
coming from interactive requests should further fight for processors etc. Clearly, things like
Miser seem to be the right way here to dynamically ‘partition’ the S2MP architecture into a
critical batch job part with high priorities under strict resource control, and a remaining part
with an UNIX-like resource management.

What remains is a question which should be answered by the vendor. What does Miser do in
case of an application which performs ordinary fork() system calls, or, what is done in case
of PVM? Early investigations have shown that so far only the parent process gets the ‘batch
critical’ attribute.

2 Architecture Overview

A T3E can have up to 2048 processors over a 3D torus interconnect. The 3D torus links
have a raw bandwidth of 600 MBytes/s in each direction. One node of the system consists
of an Alpha microprocessor, a system control chip, local memory, and a network router. The
system logic runs at 75 MHz, and the processor runs with a multiple of this, i.e. at 300
MHz for the T3E which is called T3E-600 in this paper, at 450 MHz for the T3E-900, or
at 600 MHz for the T3E-1200 (delivered at a few sites in Germany over the last few weeks).
The latter has not been taken into account here. The Alpha processor is capable to do one
floating-point add and one floating-point multiply at the same time. Each processor contains
an 8 KBytes direct-mapped primary cache, an 8 KBytes instruction cache, and a 96 KBytes
unified three-way associative second-level cache. Instead of a large, board-level cache, there
is a small set of stream buffers to improve the access to stride-1 or small-stride vectors by
prefetching. The remote communication and synchronization is done between a large set of
so-called E-registers and the memory.

An Origin2000 can have up to 128 processors where up to 4 eight-vertex hypercubes are con-
nected with each other. One node board of the system consists of two R10000 microprocessors
with 4 MBytes external second-level cache each, one HUB ASIC, and local memory. Two pro-
cessors share the same memory portion through 780 MBytes/s peak. Two node boards are
connected by a six-port router unit. The processors run at 195 MHz. They are able to exe-
cute two floating-point operations per cycle. Each processor contains a 32 KBytes two-way
set associative primary cache, and a 32 KBytes two-way set associative instruction cache. The
main memory is located in a single shared address space, hence the Origin2000 is capable to
run large multi-threaded applications too. For cache coherency a directory-based protocol is
applied, using extra memory hardware which is not accessible by the user.

Picking up real-time information completely differs on the T3E and the Origin2000. On T3E,
there is a recommended intrinsic function rtc() which returns a 64 bit integer. To get seconds,
this integer is to be divided by the return value of sysconf( SC CLK TCK). On the Origin2000
the recommended code is described in syssgi(2). Its basic idea is to map a 64 bit counter into
the user’s address space via mmap(). A step unit of 800 ns is occasionally not sufficient for
performance analyzing. One gets the following results.
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Table 1: Realtime timers

Stepunit Stepunit−1 Measured overhead to access

T3E 13.3 ns 75 MHz < 230ns

Origin2000 800 ns 1.25 MHz < 320 ns

3 Performance Comparisons

3.1 PE Performance

To draw an exact picture of the per-PE performance of at least one well known program kernel
on each of the three machines (T3E-600, T3E-900, and Origin2000), 24 variants performing
matrix multiplication have been studied. These variants come from two languages, C, and
Fortran, from either operating over the output matrix itself or over its transposed one, and
from six possible permutations to order the loops.

Here, the results from C are of interest since they reflect some hardware properties. Typically,
C compilers just generate straight code, even with ‘-O3’. On the other hand, current Fortran
compilers try to recognize patterns to replace them by highly-optimized code sequences to
get, at least, one floating-point instruction per cycle1. The MFLOP rates are depicted here
are based on 2n3 operations, where n denotes the dimension of the n×n−matrices. What we
should see is that the MIPS R10k processor gets high profit from its 4 MBytes second-level
cache. The curves for the transposed case look similarly, except that prefetching does not
longer help in some cases.

The Fortran90 examples give an impression of the excellent T3E compilers, even so the ob-
served compile-times are often many times longer than typical others. Bad loop orders are
clearly recognized and replaced by the optimum one. One more detail is of interest here. Once
started on the T3E application nodes, repeated executions exactly show the same behavior
with respect to their time consumption. This is different from the situation on an Origin2000
where the reproducibility is on a lower level.

Summarizing here, the per-PE performance of a real application is not predictable. It strongly
depends on the problem and on the code design. On the Origin2000 one has to specify, at least,
‘-O3’ to get results which are comparable with T3E performance values. In future, program
developers still should think about using the Fortran dialect Fortran90 as the implementation
language to get the best performance on such HPC systems.

1The results represented by figures 1 . . . 12 are based on UNICOS/mk 2.0.3.23, with C 6.0.2.1, and F90
3.0.2.3, and IRIX64 6.5, with C 7.2.1, and F90 7.2.1. All the compilers have been invoked with ‘-O3’ only,
whereat the SGI compilers were under control of ‘abi=n32:isa=mips4:proc=r10k’. IEEE-754 Double Precision
has been used as the floating-point number format.

3



0 100 200 300 400 500 600 700
0

10

20

30

40

50

Matrix Dimension

c[
i]

[j
]+

=a
[i

][
k]

*b
[k

][
j]

 / 
M

F
L

O
P

S

zam006, Aug 23 15:06:57 1998

kji
kij
jki
jik
ikj
ijk

Figure 1: C-coded matrix multiplication on
T3E-600 with streams off
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Figure 2: C-coded matrix multiplication on
T3E-600 with streams off, transposed case
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Figure 3: C-coded matrix multiplication on
T3E-900 with streams on
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Figure 4: C-coded matrix multiplication on
T3E-900 with streams on, transposed case
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Figure 5: C-coded matrix multiplication on Ori-
gin2000
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Figure 6: C-coded matrix multiplication on Ori-
gin2000, transposed case

3.2 MPI Performance

The measurements here are based on a kernel application which interchanges messages between
three processes, using the MPI Send()-MPI Recv() pair, and the MPI Ssend()-MPI Recv()
pair, respectively. ‘Normalized’ denotes that the measured times have been divided by three.

The protocol for sending/receiving the messages is switched, depending on the message length.
In some cases, this is pretty much optimized, sometimes not. Hence, there is still enough room
for some improvement. In case of the T3Es, the important differences between the results
based on MPI Send() and MPI Ssend(), respectively, cannot be explained in detail here.
Evidently, users should use the synchronous calls wherever possible. A little bit surprising
are the results for short messages, see figures 19 through 24. While the Origin2000 yields
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Figure 7: Fortran-coded matrix multiplication
on T3E-600 with streams off
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Figure 8: Fortran-coded matrix multiplication
on T3E-600 with streams off, transposed case
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Figure 9: Fortran-coded matrix multiplication
on T3E-900 with streams on
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Figure 10: Fortran-coded matrix multiplication
on T3E-900 with streams on, transposed case
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Figure 11: Fortran-coded matrix multiplication
on Origin2000
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Figure 12: Fortran-coded matrix multiplication
on Origin2000, transposed case

reproducible values with small standard deviations, the round-trip times strongly varies on
the T3Es. Nevertheless, the slope of the average curves of the T3Es is significantly smaller
than that of the Origin2000. Using the MPI Send()-MPI Recv() pair, the MPI point-to-point
performance of the Origin2000 is of the same order as the one of the T3E-600, except for very
large message lengths. It is less than the performance of the T3E-900 at all. With respect to
this pair, the values agree with [4].

Summarizing the measurement values, the great question is why the overall performance of
the Origin2000 is still pretty low even if a synchronous MPI Ssend() is used while the latter
boosts the performance of a T3E by a factor of 2. On the other hand, on T3Es, the MPI
implementation should silently change to synchronous mode in case of messages which are
large enough, even if the user has invoked MPI Send().
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Figure 13: MPI point-to-point communication
on T3E-600 with streams off, long messages with
MPI Send()
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Figure 14: MPI point-to-point communication
on T3E-600 with streams off, long messages with
MPI Ssend()
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Figure 15: MPI point-to-point communication
on T3E-900 with streams on, long messages with
MPI Send()
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Figure 16: MPI point-to-point communication
on T3E-900 with streams on, long messages with
MPI Ssend()
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Figure 17: MPI point-to-point communication
on Origin2000, long messages with MPI Send()
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Figure 18: MPI point-to-point communication
on Origin2000, long messages with MPI Ssend()

3.3 PVM Performance

The measurements with respect to PVM are based on a kernel application which is similar to
that for MPI. It uses the pvm psend()-pvm precv() pair.

SGI has replaced the whole PVM in July 1998 with the result that the communication rates
of the current release 3.1.1.0 with MPT 1.2.1.0 (3.3.10) are the same now as these of the open
release 3.4beta6. PVM seems to be still not working together with Miser.

As shown in figure 27, one has very short startup times on the T3E-900. This is surprising
because they are shorter than the MPI startup times.
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Figure 19: MPI point-to-point communication
on T3E-600 with streams off, short messages with
MPI Send()
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Figure 20: MPI point-to-point communication
on T3E-600 with streams off, short messages with
MPI Ssend()
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Figure 21: MPI point-to-point communication
on T3E-900 with streams on, short messages with
MPI Send()
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Figure 22: MPI point-to-point communication
on T3E-900 with streams on, short messages with
MPI Ssend()
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Figure 23: MPI point-to-point communication
on Origin2000, short messages with MPI Send()
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Figure 24: MPI point-to-point communication
on Origin2000, short messages with MPI Ssend()

Remains to give some coding hints. Interchangeable PVM codes should not contain pvm halt()
and pvm start pvmd() calls. On T3Es, these routines make no sense, except the application
should run on the command nodes which is a bad intention. On the Origin2000, the pvm halt()
call does never return currently, and the group server still core-dumps, when remotely ac-
cessed, fortunately, after the application has finished. On a T3E one should branch around
pvm spawn() which has no meaning there. There is an appropriate stub in the library. At
least on SGI hosts, MPI - as the emerging standard for message-passing applications - should
be used instead of PVM wherever possible.
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Figure 25: PVM point-to-point communication
on T3E-900 with streams on, medium size mes-
sages
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Figure 26: PVM point-to-point communication
on Origin2000, medium size messages
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Figure 27: PVM point-to-point communication
on T3E-900 with streams on, short messages
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Figure 28: PVM point-to-point communication
on Origin2000, short messages

3.4 Communication-to-computation performance ratio

To guess the communication-to-computation performance ratio of the T3E-900 and the Ori-
gin2000, the runtime behavior of an adapted version of the well known 2D-decomposed Jacobi
iteration MPI example code [3] has been investigated which comes with the VAMPIR perfor-
mance analysis tool [5].

Figure 29 shows the excellent communication patterns produced on a T3E-900, running Jacobi
iterations. The time line goes from left to right. Time sections where one of the processors
stays in the application code are colored with blue here, yellow is for different MPI-Sendrecv()
calls, and red for MPI-Allreduce(). MPI-Allreduce() sends and receives 8 bytes, i.e., very
short messages, and, only MPI-Allreduce() is discussed from now. Since we need average
values below a mean per-processor communication rate, B1 is introduced is determined by

B1 =
2l(p− 1)

t1

l is the message length in bytes, with l= 8 Bytes here, p is the number of processors, with
p= 50, and t1 denotes the average time one of the processors spends in the MPI-Allreduce()
routine. With t1 = 686µs from VAMPIR one gets B1 = 1100 KBytes/s.

In case of a dedicated Origin2000, the application code runs about two times faster, and
MPI-Allreduce() this needs about twice the time of a T3E-900. Although the program runs
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Figure 29: One of the Jacobi iterations (NX=1000), running on 50 pro-
cessors of a T3E-900

Figure 30: One of the Jacobi iterations (NX=1000), running on 50 pro-
cessors of a dedicated Origin2000
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faster at all, roughly half of the whole time is spent in the communication routines. With
t1 = 1590µs from VAMPIR, B1 equals 480 KBytes/s.

Considering only MPI-Allreduce() in case of the Jacobi iteration MPI example code, the
communication-to-computation performance ratio of the T3E-900 is about four times the
appropriate value of a dedicated Origin2000. This performance ratio is suitable to guess the
parallel efficiency of a given application, using a certain number of processors.

4 Scheduling Aspects

With respect to scheduling, we should distinguish between job scheduling and task scheduling.
In principle, both of them have to solve discrete optimization problems. The job scheduler has
to reorder jobs with well defined resource requirements to start them preventing any resource
conflict.

On T3Es, the optimization problem of the job scheduler has two variables, the number of PEs
and the time. On shared memory machines, there is one more variable, which is the memory
needed to execute the job. Assuming that the job scheduler has done its work, i.e. there is a
plan of action, the question is how to enforce that this plan is executed in time. A common
way is to remove all the interactive load from the machine. Interactive load cannot be taken
into account since its resource requirements are unknown and strongly varying. Another way
is to qualify the task scheduler to distinguish between task objects which are part of the plan
of action or not. In figure 31, mission critical jobs are blue, green, and yellow, the red part
denotes interactive load which is running under time-sharing conditions, using only resources
which are not needed by the others. One should ask the question here whether it is possible
to make all the pages sticky which are associated with the batch jobs.

Clearly, writing a task scheduler which is able to distribute thousands of task objects over
hundreds of processors, distinguishing between mission critical tasks and uncritical ones, is
one of the pretty big problems of our days. Being successful here, large application servers will
win over clusters of SMP nodes, and, scientific users will win too, because they can have lots
of PEs and large memory portions at the same time. Miser is a first step into this direction;
nevertheless, Miser still has too many restrictions today. It will be the task of the next months
for all application groups world-wide to give input about important requirements for effective
scheduling issues back to the vendor to get the next generation of system software on SGI
hardware ‘just right’.

Figure 31: One possible scheduling concept for large shared
memory application servers
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5 Sharing Cache-Lines

For the memory access conditions which a single Origin2000 processor does have far from
saturation effects, see the discussion in [6]. Like the Origin, the SGI/CRAY SN-1 machine
is a shared memory system, which will allow to run large multi-threaded applications too.
Explicit multi-threading is not very common in the field of scientific applications. Moreover,
multi-threaded applications matter little to T3Es. Even so, a kernel has been written to study
performance degradations caused by concurrent write access to data which are located in the
same cache line. Figure 32 shows the result of the 40 processor multi-threaded kernel in case
of non-shared cache lines. It has run under Miser to enforce its execution on top of more than
120 per cent user load base.

The time runs horizontally for each thread from left to right. One color change from blue
to yellow and back denotes the same portion of work. The work itself is to increment an
unsigned short integer ignoring wraparounds. Unsigned short integers have been taken to
ensure that one cache line is capable to contain all of them. After 25 portions of work, there
is a barrier which synchronizes all the threads. Despite of some disturbances, the execution
pattern is very regular. Figure 33 shows the result using the same kernel, expect that all the
40 unsigned short integers are localized in the same cache line. It seems that one can see
the hardware of the Origin2000, two threads are much more faster than the others, perhaps,
they are running on the processors of that node board which contains the memory where the
origin of the cache line is localized. After these two processors have finished their part, all
the others get able to accelerate their work. The more threads finish their work, the more the
remaining threads increase in speed.

1.3 seconds
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Figure 32: Runtime behavior of a multi-threaded kernel without data access collision

11



171 seconds
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Figure 33: Runtime behavior of a multi-threaded kernel with maximum data access collision

Summarizing here, shared memory machines do not only allow to write slow code which is
based on the message-passing parallelism, one has also the freedom to write slowly running
multi-threaded applications. On the other hand, in normal situations the overhead introduced
by this situation of ‘wrong-sharing’ data is - because of the still working principle of ‘locality’
in most cases - not a major problem. Nevertheless, if applications are developed, e.g. based
on OpenMP, the user should carefully look to the time-consuming program parts.

6 Conclusion

We have compared the CRAY T3E, i. e. the massive parallel machine of these days, and the
SGI Origin2000, a new-style shared memory system. Both systems are based on excellent
hardware concepts. The merged SGI/CRAY machine of the future will be closer to an Ori-
gin2000 than to a T3E. Nevertheless, all excellent parameter values of the T3E, the transfer
bandwidth, for example, should be carried on - and somewhat improved if possible - in the
new architecture. IRIX, as the operating system, has done important steps to control the
complicated situation of large shared memory application servers. Nevertheless, it still has
to be more and more improved to ensure that, once, the job scheduling system will have the
power to enforce its plan of action via task scheduling mechanisms in the presence of any
interactive load.
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