### tp113.apm

```Model tp113
! Source version 1

Variables
x[ 1] =  2
x[ 2] =  3
x[ 3] =  5
x[ 4] =  5
x[ 5] =  1
x[ 6] =  2
x[ 7] =  7
x[ 8] =  3
x[ 9] =  6
x[10] = 10
obj
End Variables

Intermediates
c[1] = 105 - 4*x[1] - 5*x[2] + 3*x[7]       &
- 9*x[8]
c[2] = (-1)*10*x[1] + 8*x[2] + 17*x[7]      &
- 2*x[8]
c[3] = 8*x[1] - 2*x[2] - 5*x[9] + 2*x[10]   &
+ 12
c[4] = (-3)*(x[1] - 2)^2 - 4*(x[2] - 3)^2   &
- 2*x[3]^2 + 7*x[4] + 120
c[5] = (-5)*x[1]^2 - 8*x[2] - (x[3] - 6)^2  &
+ 2*x[4] + 40
c[6] = (-1/2)*(x[1] - 8)^2 - 2*(x[2] - 4)^2 &
- 3*x[5]^2 + x[6] + 30
c[7] = (-1)*x[1]^2 - 2*(x[2] - 2)^2         &
+ 2*x[1]*x[2] - 14*x[5] + 6*x[6]
c[8] = 3*x[1] - 6*x[2] - 12*(x[9] - 8)^2    &
+ 7*x[10]
mf   = x[1]^2 + x[2]^2 + x[1]*x[2]          &
- 14*x[1] - 16*x[2] + (x[3] - 10)^2    &
+ 4*(x[4] - 5)^2 + (x[5] - 3)^2        &
+ 2*(x[6] - 1)^2 + 5*x[7]^2            &
+ 7*(x[8] - 11)^2 + 2*(x[9] - 10)^2    &
+ (x[10] - 7)^2 + 45
End Intermediates

Equations
c[1:8] >= 0

obj = mf

! best known objective = 24.30620906817981
! begin of best known solution
! x[ 1] = 2.171996371255455
! x[ 2] = 2.36368297369728
! x[ 3] = 8.77392573847685
! x[ 4] = 5.095984487948453
! x[ 5] = 0.9906547649638592
! x[ 6] = 1.430573978936316
! x[ 7] = 1.321644208161703
! x[ 8] = 9.828725807886321
! x[ 9] = 8.280091670098346
! x[10] = 8.375926663921323
! end of best known solution
End Equations
End Model
```

Stephan K.H. Seidl