### tp101.apm

```Model tp101
! Source version 1

Parameters
a = -1/4
End Parameters

Variables
x[1:6] = 6, >= 1/10,  <= 10
x[7:7] = 6, >= 1/100, <= 10
obj
End Variables

Intermediates
c[1] = 1                                             &
- (1/2)*x[1]^(1/2)*x[3]^(-1)*x[6]^(-2)*x[7]     &
- (7/10)*x[1]^3*x[2]*x[3]^(-2)*x[6]*x[7]^(1/2)  &
- (2/10)*x[2]^(-1)*x[3]*x[4]^(-1/2)*x[6]^(2/3)* &
x[7]^(1/4)
c[2] = 1                                             &
- (13/10)*x[1]^(-1/2)*x[2]*x[3]^(-1)*x[5]^(-1)* &
x[6]                                          &
- (8/10)*x[3]*x[4]^(-1)*x[5]^(-1)*x[6]^2        &
- (31/10)*x[1]^(-1)*x[2]^(1/2)*x[4]^(-2)*       &
x[5]^(-1)*x[6]^(1/3)
c[3] = 1                                             &
- 2*x[1]*x[3]^(-3/2)*x[5]*x[6]^(-1)*x[7]^(1/3)  &
- (1/10)*x[2]*x[3]^(-1/2)*x[5]*x[6]^(-1)*       &
x[7]^(-1/2)                                   &
- x[1]^(-1)*x[2]*x[3]^(1/2)*x[5]                &
- (65/100)*x[2]^(-2)*x[3]*x[5]*x[6]^(-1)*x[7]
c[4] = 1                                             &
- (2/10)*x[1]^(-2)*x[2]*x[4]^(-1)*x[5]^(1/2)*   &
x[7]^(1/3)                                    &
- (3/10)*x[1]^(1/2)*x[2]^2*x[3]*x[4]^(1/3)*     &
x[7]^(1/4)*x[5]^(-2/3)                        &
- (4/10)*x[1]^(-3)*x[2]^(-2)*x[3]*x[5]*         &
x[7]^(3/4)                                    &
- (1/2)*x[3]^(-2)*x[4]*x[7]^(1/2)
mf   = 10*x[1]*x[2]^(-1)*x[4]^2*x[6]^(-3)*x[7]^a     &
+ 15*x[1]^(-1)*x[2]^(-2)*x[3]*x[4]*x[5]^(-1)*   &
x[7]^(-1/2)                                   &
+ 20*x[1]^(-2)*x[2]*x[4]^(-1)*x[5]^(-2)*x[6]    &
+ 25*x[1]^2*x[2]^2*x[3]^(-1)*x[5]^(1/2)*        &
x[6]^(-2)*x[7]
c[5] = mf - 100
c[6] = 3000 - mf
End Intermediates

Equations
c[1:6] >= 0

obj = mf

! best known objective = 1809.764765571414
! begin of best known solution
! x[1] = 2.856158555755147
! x[2] = 0.6108230308034505
! x[3] = 2.150812562164474
! x[4] = 4.71287370924123
! x[5] = 0.9994875408574642
! x[6] = 1.347507504828331
! x[7] = 0.0316527665027743
! end of best known solution
End Equations
End Model
```

Stephan K.H. Seidl