fmcmap/tp090r.map


If Cut/Copy and Paste fails, then click here for download.


fmcTitle("tp090r"):
# Source version 2
# Simple APM canonicalizer version 1.3
# FMCMAP backend version 1.2
myownabs := proc(x::algebraic) return(fmc_m_abs(x)): end proc:
mu12_1 := 0.8603335890194:
mu12_2 := 3.4256184594817:
mu12_3 := 6.4372981791719:
mu12_4 := 9.5293344053620:
mu12_5 := 12.6452872238566:
mu12_6 := 15.7712848748159:
mu12_7 := 18.9024099568600:
mu12_8 := 22.0364967279386:
mu12_9 := 25.1724463266467:
mu12_10 := 28.3096428544520:
mu12_11 := 31.4477146375462:
mu12_12 := 34.5864242152889:
mu12_13 := 37.7256128277765:
mu12_14 := 40.8651703304881:
mu12_15 := 44.0050179208308:
mu12_16 := 47.1450977367610:
mu12_17 := 50.2853663377737:
mu12_18 := 53.4257904773947:
mu12_19 := 56.5663442798215:
mu12_20 := 59.7070073053355:
mu12_21 := 62.8477631944545:
mu12_22 := 65.9885986984904:
mu12_23 := 69.1295029738953:
mu12_24 := 72.2704670603090:
mu12_25 := 75.4114834888482:
mu12_26 := 78.5525459842429:
mu12_27 := 81.6936492356017:
mu12_28 := 84.8347887180423:
mu12_29 := 87.9759605524932:
mu12_30 := 91.1171613944647:
tg12_1 := tan(mu12_1):
tg12_2 := tan(mu12_2):
tg12_3 := tan(mu12_3):
tg12_4 := tan(mu12_4):
tg12_5 := tan(mu12_5):
tg12_6 := tan(mu12_6):
tg12_7 := tan(mu12_7):
tg12_8 := tan(mu12_8):
tg12_9 := tan(mu12_9):
tg12_10 := tan(mu12_10):
tg12_11 := tan(mu12_11):
tg12_12 := tan(mu12_12):
tg12_13 := tan(mu12_13):
tg12_14 := tan(mu12_14):
tg12_15 := tan(mu12_15):
tg12_16 := tan(mu12_16):
tg12_17 := tan(mu12_17):
tg12_18 := tan(mu12_18):
tg12_19 := tan(mu12_19):
tg12_20 := tan(mu12_20):
tg12_21 := tan(mu12_21):
tg12_22 := tan(mu12_22):
tg12_23 := tan(mu12_23):
tg12_24 := tan(mu12_24):
tg12_25 := tan(mu12_25):
tg12_26 := tan(mu12_26):
tg12_27 := tan(mu12_27):
tg12_28 := tan(mu12_28):
tg12_29 := tan(mu12_29):
tg12_30 := tan(mu12_30):
mu24_1 := (1 + mu12_1^2*(1 + tg12_1^2)) / (tg12_1 + mu12_1*(1 + tg12_1^2)):
mu24_2 := (1 + mu12_2^2*(1 + tg12_2^2)) / (tg12_2 + mu12_2*(1 + tg12_2^2)):
mu24_3 := (1 + mu12_3^2*(1 + tg12_3^2)) / (tg12_3 + mu12_3*(1 + tg12_3^2)):
mu24_4 := (1 + mu12_4^2*(1 + tg12_4^2)) / (tg12_4 + mu12_4*(1 + tg12_4^2)):
mu24_5 := (1 + mu12_5^2*(1 + tg12_5^2)) / (tg12_5 + mu12_5*(1 + tg12_5^2)):
mu24_6 := (1 + mu12_6^2*(1 + tg12_6^2)) / (tg12_6 + mu12_6*(1 + tg12_6^2)):
mu24_7 := (1 + mu12_7^2*(1 + tg12_7^2)) / (tg12_7 + mu12_7*(1 + tg12_7^2)):
mu24_8 := (1 + mu12_8^2*(1 + tg12_8^2)) / (tg12_8 + mu12_8*(1 + tg12_8^2)):
mu24_9 := (1 + mu12_9^2*(1 + tg12_9^2)) / (tg12_9 + mu12_9*(1 + tg12_9^2)):
mu24_10 := (1 + mu12_10^2*(1 + tg12_10^2)) / (tg12_10 + mu12_10*(1 + tg12_10^2)):
mu24_11 := (1 + mu12_11^2*(1 + tg12_11^2)) / (tg12_11 + mu12_11*(1 + tg12_11^2)):
mu24_12 := (1 + mu12_12^2*(1 + tg12_12^2)) / (tg12_12 + mu12_12*(1 + tg12_12^2)):
mu24_13 := (1 + mu12_13^2*(1 + tg12_13^2)) / (tg12_13 + mu12_13*(1 + tg12_13^2)):
mu24_14 := (1 + mu12_14^2*(1 + tg12_14^2)) / (tg12_14 + mu12_14*(1 + tg12_14^2)):
mu24_15 := (1 + mu12_15^2*(1 + tg12_15^2)) / (tg12_15 + mu12_15*(1 + tg12_15^2)):
mu24_16 := (1 + mu12_16^2*(1 + tg12_16^2)) / (tg12_16 + mu12_16*(1 + tg12_16^2)):
mu24_17 := (1 + mu12_17^2*(1 + tg12_17^2)) / (tg12_17 + mu12_17*(1 + tg12_17^2)):
mu24_18 := (1 + mu12_18^2*(1 + tg12_18^2)) / (tg12_18 + mu12_18*(1 + tg12_18^2)):
mu24_19 := (1 + mu12_19^2*(1 + tg12_19^2)) / (tg12_19 + mu12_19*(1 + tg12_19^2)):
mu24_20 := (1 + mu12_20^2*(1 + tg12_20^2)) / (tg12_20 + mu12_20*(1 + tg12_20^2)):
mu24_21 := (1 + mu12_21^2*(1 + tg12_21^2)) / (tg12_21 + mu12_21*(1 + tg12_21^2)):
mu24_22 := (1 + mu12_22^2*(1 + tg12_22^2)) / (tg12_22 + mu12_22*(1 + tg12_22^2)):
mu24_23 := (1 + mu12_23^2*(1 + tg12_23^2)) / (tg12_23 + mu12_23*(1 + tg12_23^2)):
mu24_24 := (1 + mu12_24^2*(1 + tg12_24^2)) / (tg12_24 + mu12_24*(1 + tg12_24^2)):
mu24_25 := (1 + mu12_25^2*(1 + tg12_25^2)) / (tg12_25 + mu12_25*(1 + tg12_25^2)):
mu24_26 := (1 + mu12_26^2*(1 + tg12_26^2)) / (tg12_26 + mu12_26*(1 + tg12_26^2)):
mu24_27 := (1 + mu12_27^2*(1 + tg12_27^2)) / (tg12_27 + mu12_27*(1 + tg12_27^2)):
mu24_28 := (1 + mu12_28^2*(1 + tg12_28^2)) / (tg12_28 + mu12_28*(1 + tg12_28^2)):
mu24_29 := (1 + mu12_29^2*(1 + tg12_29^2)) / (tg12_29 + mu12_29*(1 + tg12_29^2)):
mu24_30 := (1 + mu12_30^2*(1 + tg12_30^2)) / (tg12_30 + mu12_30*(1 + tg12_30^2)):
tg24_1 := tan(mu24_1):
tg24_2 := tan(mu24_2):
tg24_3 := tan(mu24_3):
tg24_4 := tan(mu24_4):
tg24_5 := tan(mu24_5):
tg24_6 := tan(mu24_6):
tg24_7 := tan(mu24_7):
tg24_8 := tan(mu24_8):
tg24_9 := tan(mu24_9):
tg24_10 := tan(mu24_10):
tg24_11 := tan(mu24_11):
tg24_12 := tan(mu24_12):
tg24_13 := tan(mu24_13):
tg24_14 := tan(mu24_14):
tg24_15 := tan(mu24_15):
tg24_16 := tan(mu24_16):
tg24_17 := tan(mu24_17):
tg24_18 := tan(mu24_18):
tg24_19 := tan(mu24_19):
tg24_20 := tan(mu24_20):
tg24_21 := tan(mu24_21):
tg24_22 := tan(mu24_22):
tg24_23 := tan(mu24_23):
tg24_24 := tan(mu24_24):
tg24_25 := tan(mu24_25):
tg24_26 := tan(mu24_26):
tg24_27 := tan(mu24_27):
tg24_28 := tan(mu24_28):
tg24_29 := tan(mu24_29):
tg24_30 := tan(mu24_30):
mu48_1 := (1 + mu24_1^2*(1 + tg24_1^2)) / (tg24_1 + mu24_1*(1 + tg24_1^2)):
mu48_2 := (1 + mu24_2^2*(1 + tg24_2^2)) / (tg24_2 + mu24_2*(1 + tg24_2^2)):
mu48_3 := (1 + mu24_3^2*(1 + tg24_3^2)) / (tg24_3 + mu24_3*(1 + tg24_3^2)):
mu48_4 := (1 + mu24_4^2*(1 + tg24_4^2)) / (tg24_4 + mu24_4*(1 + tg24_4^2)):
mu48_5 := (1 + mu24_5^2*(1 + tg24_5^2)) / (tg24_5 + mu24_5*(1 + tg24_5^2)):
mu48_6 := (1 + mu24_6^2*(1 + tg24_6^2)) / (tg24_6 + mu24_6*(1 + tg24_6^2)):
mu48_7 := (1 + mu24_7^2*(1 + tg24_7^2)) / (tg24_7 + mu24_7*(1 + tg24_7^2)):
mu48_8 := (1 + mu24_8^2*(1 + tg24_8^2)) / (tg24_8 + mu24_8*(1 + tg24_8^2)):
mu48_9 := (1 + mu24_9^2*(1 + tg24_9^2)) / (tg24_9 + mu24_9*(1 + tg24_9^2)):
mu48_10 := (1 + mu24_10^2*(1 + tg24_10^2)) / (tg24_10 + mu24_10*(1 + tg24_10^2)):
mu48_11 := (1 + mu24_11^2*(1 + tg24_11^2)) / (tg24_11 + mu24_11*(1 + tg24_11^2)):
mu48_12 := (1 + mu24_12^2*(1 + tg24_12^2)) / (tg24_12 + mu24_12*(1 + tg24_12^2)):
mu48_13 := (1 + mu24_13^2*(1 + tg24_13^2)) / (tg24_13 + mu24_13*(1 + tg24_13^2)):
mu48_14 := (1 + mu24_14^2*(1 + tg24_14^2)) / (tg24_14 + mu24_14*(1 + tg24_14^2)):
mu48_15 := (1 + mu24_15^2*(1 + tg24_15^2)) / (tg24_15 + mu24_15*(1 + tg24_15^2)):
mu48_16 := (1 + mu24_16^2*(1 + tg24_16^2)) / (tg24_16 + mu24_16*(1 + tg24_16^2)):
mu48_17 := (1 + mu24_17^2*(1 + tg24_17^2)) / (tg24_17 + mu24_17*(1 + tg24_17^2)):
mu48_18 := (1 + mu24_18^2*(1 + tg24_18^2)) / (tg24_18 + mu24_18*(1 + tg24_18^2)):
mu48_19 := (1 + mu24_19^2*(1 + tg24_19^2)) / (tg24_19 + mu24_19*(1 + tg24_19^2)):
mu48_20 := (1 + mu24_20^2*(1 + tg24_20^2)) / (tg24_20 + mu24_20*(1 + tg24_20^2)):
mu48_21 := (1 + mu24_21^2*(1 + tg24_21^2)) / (tg24_21 + mu24_21*(1 + tg24_21^2)):
mu48_22 := (1 + mu24_22^2*(1 + tg24_22^2)) / (tg24_22 + mu24_22*(1 + tg24_22^2)):
mu48_23 := (1 + mu24_23^2*(1 + tg24_23^2)) / (tg24_23 + mu24_23*(1 + tg24_23^2)):
mu48_24 := (1 + mu24_24^2*(1 + tg24_24^2)) / (tg24_24 + mu24_24*(1 + tg24_24^2)):
mu48_25 := (1 + mu24_25^2*(1 + tg24_25^2)) / (tg24_25 + mu24_25*(1 + tg24_25^2)):
mu48_26 := (1 + mu24_26^2*(1 + tg24_26^2)) / (tg24_26 + mu24_26*(1 + tg24_26^2)):
mu48_27 := (1 + mu24_27^2*(1 + tg24_27^2)) / (tg24_27 + mu24_27*(1 + tg24_27^2)):
mu48_28 := (1 + mu24_28^2*(1 + tg24_28^2)) / (tg24_28 + mu24_28*(1 + tg24_28^2)):
mu48_29 := (1 + mu24_29^2*(1 + tg24_29^2)) / (tg24_29 + mu24_29*(1 + tg24_29^2)):
mu48_30 := (1 + mu24_30^2*(1 + tg24_30^2)) / (tg24_30 + mu24_30*(1 + tg24_30^2)):
mu_1 := mu48_1:
mu_2 := mu48_2:
mu_3 := mu48_3:
mu_4 := mu48_4:
mu_5 := mu48_5:
mu_6 := mu48_6:
mu_7 := mu48_7:
mu_8 := mu48_8:
mu_9 := mu48_9:
mu_10 := mu48_10:
mu_11 := mu48_11:
mu_12 := mu48_12:
mu_13 := mu48_13:
mu_14 := mu48_14:
mu_15 := mu48_15:
mu_16 := mu48_16:
mu_17 := mu48_17:
mu_18 := mu48_18:
mu_19 := mu48_19:
mu_20 := mu48_20:
mu_21 := mu48_21:
mu_22 := mu48_22:
mu_23 := mu48_23:
mu_24 := mu48_24:
mu_25 := mu48_25:
mu_26 := mu48_26:
mu_27 := mu48_27:
mu_28 := mu48_28:
mu_29 := mu48_29:
mu_30 := mu48_30:
isign_1 := 1:
isign_2 := (-1)*isign_1:
isign_3 := (-1)*isign_2:
isign_4 := (-1)*isign_3:
isign_5 := (-1)*isign_4:
isign_6 := (-1)*isign_5:
isign_7 := (-1)*isign_6:
isign_8 := (-1)*isign_7:
isign_9 := (-1)*isign_8:
isign_10 := (-1)*isign_9:
isign_11 := (-1)*isign_10:
isign_12 := (-1)*isign_11:
isign_13 := (-1)*isign_12:
isign_14 := (-1)*isign_13:
isign_15 := (-1)*isign_14:
isign_16 := (-1)*isign_15:
isign_17 := (-1)*isign_16:
isign_18 := (-1)*isign_17:
isign_19 := (-1)*isign_18:
isign_20 := (-1)*isign_19:
isign_21 := (-1)*isign_20:
isign_22 := (-1)*isign_21:
isign_23 := (-1)*isign_22:
isign_24 := (-1)*isign_23:
isign_25 := (-1)*isign_24:
isign_26 := (-1)*isign_25:
isign_27 := (-1)*isign_26:
isign_28 := (-1)*isign_27:
isign_29 := (-1)*isign_28:
isign_30 := (-1)*isign_29:
snmu_1 := isign_1*sqrt(1/(1 + mu_1^2)):
snmu_2 := isign_2*sqrt(1/(1 + mu_2^2)):
snmu_3 := isign_3*sqrt(1/(1 + mu_3^2)):
snmu_4 := isign_4*sqrt(1/(1 + mu_4^2)):
snmu_5 := isign_5*sqrt(1/(1 + mu_5^2)):
snmu_6 := isign_6*sqrt(1/(1 + mu_6^2)):
snmu_7 := isign_7*sqrt(1/(1 + mu_7^2)):
snmu_8 := isign_8*sqrt(1/(1 + mu_8^2)):
snmu_9 := isign_9*sqrt(1/(1 + mu_9^2)):
snmu_10 := isign_10*sqrt(1/(1 + mu_10^2)):
snmu_11 := isign_11*sqrt(1/(1 + mu_11^2)):
snmu_12 := isign_12*sqrt(1/(1 + mu_12^2)):
snmu_13 := isign_13*sqrt(1/(1 + mu_13^2)):
snmu_14 := isign_14*sqrt(1/(1 + mu_14^2)):
snmu_15 := isign_15*sqrt(1/(1 + mu_15^2)):
snmu_16 := isign_16*sqrt(1/(1 + mu_16^2)):
snmu_17 := isign_17*sqrt(1/(1 + mu_17^2)):
snmu_18 := isign_18*sqrt(1/(1 + mu_18^2)):
snmu_19 := isign_19*sqrt(1/(1 + mu_19^2)):
snmu_20 := isign_20*sqrt(1/(1 + mu_20^2)):
snmu_21 := isign_21*sqrt(1/(1 + mu_21^2)):
snmu_22 := isign_22*sqrt(1/(1 + mu_22^2)):
snmu_23 := isign_23*sqrt(1/(1 + mu_23^2)):
snmu_24 := isign_24*sqrt(1/(1 + mu_24^2)):
snmu_25 := isign_25*sqrt(1/(1 + mu_25^2)):
snmu_26 := isign_26*sqrt(1/(1 + mu_26^2)):
snmu_27 := isign_27*sqrt(1/(1 + mu_27^2)):
snmu_28 := isign_28*sqrt(1/(1 + mu_28^2)):
snmu_29 := isign_29*sqrt(1/(1 + mu_29^2)):
snmu_30 := isign_30*sqrt(1/(1 + mu_30^2)):
csmu_1 := isign_1*sqrt(mu_1^2/(1 + mu_1^2)):
csmu_2 := isign_2*sqrt(mu_2^2/(1 + mu_2^2)):
csmu_3 := isign_3*sqrt(mu_3^2/(1 + mu_3^2)):
csmu_4 := isign_4*sqrt(mu_4^2/(1 + mu_4^2)):
csmu_5 := isign_5*sqrt(mu_5^2/(1 + mu_5^2)):
csmu_6 := isign_6*sqrt(mu_6^2/(1 + mu_6^2)):
csmu_7 := isign_7*sqrt(mu_7^2/(1 + mu_7^2)):
csmu_8 := isign_8*sqrt(mu_8^2/(1 + mu_8^2)):
csmu_9 := isign_9*sqrt(mu_9^2/(1 + mu_9^2)):
csmu_10 := isign_10*sqrt(mu_10^2/(1 + mu_10^2)):
csmu_11 := isign_11*sqrt(mu_11^2/(1 + mu_11^2)):
csmu_12 := isign_12*sqrt(mu_12^2/(1 + mu_12^2)):
csmu_13 := isign_13*sqrt(mu_13^2/(1 + mu_13^2)):
csmu_14 := isign_14*sqrt(mu_14^2/(1 + mu_14^2)):
csmu_15 := isign_15*sqrt(mu_15^2/(1 + mu_15^2)):
csmu_16 := isign_16*sqrt(mu_16^2/(1 + mu_16^2)):
csmu_17 := isign_17*sqrt(mu_17^2/(1 + mu_17^2)):
csmu_18 := isign_18*sqrt(mu_18^2/(1 + mu_18^2)):
csmu_19 := isign_19*sqrt(mu_19^2/(1 + mu_19^2)):
csmu_20 := isign_20*sqrt(mu_20^2/(1 + mu_20^2)):
csmu_21 := isign_21*sqrt(mu_21^2/(1 + mu_21^2)):
csmu_22 := isign_22*sqrt(mu_22^2/(1 + mu_22^2)):
csmu_23 := isign_23*sqrt(mu_23^2/(1 + mu_23^2)):
csmu_24 := isign_24*sqrt(mu_24^2/(1 + mu_24^2)):
csmu_25 := isign_25*sqrt(mu_25^2/(1 + mu_25^2)):
csmu_26 := isign_26*sqrt(mu_26^2/(1 + mu_26^2)):
csmu_27 := isign_27*sqrt(mu_27^2/(1 + mu_27^2)):
csmu_28 := isign_28*sqrt(mu_28^2/(1 + mu_28^2)):
csmu_29 := isign_29*sqrt(mu_29^2/(1 + mu_29^2)):
csmu_30 := isign_30*sqrt(mu_30^2/(1 + mu_30^2)):
snmuxcsmu_1 := mu_1/(1 + mu_1^2):
snmuxcsmu_2 := mu_2/(1 + mu_2^2):
snmuxcsmu_3 := mu_3/(1 + mu_3^2):
snmuxcsmu_4 := mu_4/(1 + mu_4^2):
snmuxcsmu_5 := mu_5/(1 + mu_5^2):
snmuxcsmu_6 := mu_6/(1 + mu_6^2):
snmuxcsmu_7 := mu_7/(1 + mu_7^2):
snmuxcsmu_8 := mu_8/(1 + mu_8^2):
snmuxcsmu_9 := mu_9/(1 + mu_9^2):
snmuxcsmu_10 := mu_10/(1 + mu_10^2):
snmuxcsmu_11 := mu_11/(1 + mu_11^2):
snmuxcsmu_12 := mu_12/(1 + mu_12^2):
snmuxcsmu_13 := mu_13/(1 + mu_13^2):
snmuxcsmu_14 := mu_14/(1 + mu_14^2):
snmuxcsmu_15 := mu_15/(1 + mu_15^2):
snmuxcsmu_16 := mu_16/(1 + mu_16^2):
snmuxcsmu_17 := mu_17/(1 + mu_17^2):
snmuxcsmu_18 := mu_18/(1 + mu_18^2):
snmuxcsmu_19 := mu_19/(1 + mu_19^2):
snmuxcsmu_20 := mu_20/(1 + mu_20^2):
snmuxcsmu_21 := mu_21/(1 + mu_21^2):
snmuxcsmu_22 := mu_22/(1 + mu_22^2):
snmuxcsmu_23 := mu_23/(1 + mu_23^2):
snmuxcsmu_24 := mu_24/(1 + mu_24^2):
snmuxcsmu_25 := mu_25/(1 + mu_25^2):
snmuxcsmu_26 := mu_26/(1 + mu_26^2):
snmuxcsmu_27 := mu_27/(1 + mu_27^2):
snmuxcsmu_28 := mu_28/(1 + mu_28^2):
snmuxcsmu_29 := mu_29/(1 + mu_29^2):
snmuxcsmu_30 := mu_30/(1 + mu_30^2):
aux2_1 := snmuxcsmu_1/(2*mu_1) + 1/2:
aux2_2 := snmuxcsmu_2/(2*mu_2) + 1/2:
aux2_3 := snmuxcsmu_3/(2*mu_3) + 1/2:
aux2_4 := snmuxcsmu_4/(2*mu_4) + 1/2:
aux2_5 := snmuxcsmu_5/(2*mu_5) + 1/2:
aux2_6 := snmuxcsmu_6/(2*mu_6) + 1/2:
aux2_7 := snmuxcsmu_7/(2*mu_7) + 1/2:
aux2_8 := snmuxcsmu_8/(2*mu_8) + 1/2:
aux2_9 := snmuxcsmu_9/(2*mu_9) + 1/2:
aux2_10 := snmuxcsmu_10/(2*mu_10) + 1/2:
aux2_11 := snmuxcsmu_11/(2*mu_11) + 1/2:
aux2_12 := snmuxcsmu_12/(2*mu_12) + 1/2:
aux2_13 := snmuxcsmu_13/(2*mu_13) + 1/2:
aux2_14 := snmuxcsmu_14/(2*mu_14) + 1/2:
aux2_15 := snmuxcsmu_15/(2*mu_15) + 1/2:
aux2_16 := snmuxcsmu_16/(2*mu_16) + 1/2:
aux2_17 := snmuxcsmu_17/(2*mu_17) + 1/2:
aux2_18 := snmuxcsmu_18/(2*mu_18) + 1/2:
aux2_19 := snmuxcsmu_19/(2*mu_19) + 1/2:
aux2_20 := snmuxcsmu_20/(2*mu_20) + 1/2:
aux2_21 := snmuxcsmu_21/(2*mu_21) + 1/2:
aux2_22 := snmuxcsmu_22/(2*mu_22) + 1/2:
aux2_23 := snmuxcsmu_23/(2*mu_23) + 1/2:
aux2_24 := snmuxcsmu_24/(2*mu_24) + 1/2:
aux2_25 := snmuxcsmu_25/(2*mu_25) + 1/2:
aux2_26 := snmuxcsmu_26/(2*mu_26) + 1/2:
aux2_27 := snmuxcsmu_27/(2*mu_27) + 1/2:
aux2_28 := snmuxcsmu_28/(2*mu_28) + 1/2:
aux2_29 := snmuxcsmu_29/(2*mu_29) + 1/2:
aux2_30 := snmuxcsmu_30/(2*mu_30) + 1/2:
aux4_1 := (-2)*snmu_1/mu_1 + 2*csmu_1:
aux4_2 := (-2)*snmu_2/mu_2 + 2*csmu_2:
aux4_3 := (-2)*snmu_3/mu_3 + 2*csmu_3:
aux4_4 := (-2)*snmu_4/mu_4 + 2*csmu_4:
aux4_5 := (-2)*snmu_5/mu_5 + 2*csmu_5:
aux4_6 := (-2)*snmu_6/mu_6 + 2*csmu_6:
aux4_7 := (-2)*snmu_7/mu_7 + 2*csmu_7:
aux4_8 := (-2)*snmu_8/mu_8 + 2*csmu_8:
aux4_9 := (-2)*snmu_9/mu_9 + 2*csmu_9:
aux4_10 := (-2)*snmu_10/mu_10 + 2*csmu_10:
aux4_11 := (-2)*snmu_11/mu_11 + 2*csmu_11:
aux4_12 := (-2)*snmu_12/mu_12 + 2*csmu_12:
aux4_13 := (-2)*snmu_13/mu_13 + 2*csmu_13:
aux4_14 := (-2)*snmu_14/mu_14 + 2*csmu_14:
aux4_15 := (-2)*snmu_15/mu_15 + 2*csmu_15:
aux4_16 := (-2)*snmu_16/mu_16 + 2*csmu_16:
aux4_17 := (-2)*snmu_17/mu_17 + 2*csmu_17:
aux4_18 := (-2)*snmu_18/mu_18 + 2*csmu_18:
aux4_19 := (-2)*snmu_19/mu_19 + 2*csmu_19:
aux4_20 := (-2)*snmu_20/mu_20 + 2*csmu_20:
aux4_21 := (-2)*snmu_21/mu_21 + 2*csmu_21:
aux4_22 := (-2)*snmu_22/mu_22 + 2*csmu_22:
aux4_23 := (-2)*snmu_23/mu_23 + 2*csmu_23:
aux4_24 := (-2)*snmu_24/mu_24 + 2*csmu_24:
aux4_25 := (-2)*snmu_25/mu_25 + 2*csmu_25:
aux4_26 := (-2)*snmu_26/mu_26 + 2*csmu_26:
aux4_27 := (-2)*snmu_27/mu_27 + 2*csmu_27:
aux4_28 := (-2)*snmu_28/mu_28 + 2*csmu_28:
aux4_29 := (-2)*snmu_29/mu_29 + 2*csmu_29:
aux4_30 := (-2)*snmu_30/mu_30 + 2*csmu_30:
A_1 := 2*snmu_1/(mu_1 + snmuxcsmu_1):
A_2 := 2*snmu_2/(mu_2 + snmuxcsmu_2):
A_3 := 2*snmu_3/(mu_3 + snmuxcsmu_3):
A_4 := 2*snmu_4/(mu_4 + snmuxcsmu_4):
A_5 := 2*snmu_5/(mu_5 + snmuxcsmu_5):
A_6 := 2*snmu_6/(mu_6 + snmuxcsmu_6):
A_7 := 2*snmu_7/(mu_7 + snmuxcsmu_7):
A_8 := 2*snmu_8/(mu_8 + snmuxcsmu_8):
A_9 := 2*snmu_9/(mu_9 + snmuxcsmu_9):
A_10 := 2*snmu_10/(mu_10 + snmuxcsmu_10):
A_11 := 2*snmu_11/(mu_11 + snmuxcsmu_11):
A_12 := 2*snmu_12/(mu_12 + snmuxcsmu_12):
A_13 := 2*snmu_13/(mu_13 + snmuxcsmu_13):
A_14 := 2*snmu_14/(mu_14 + snmuxcsmu_14):
A_15 := 2*snmu_15/(mu_15 + snmuxcsmu_15):
A_16 := 2*snmu_16/(mu_16 + snmuxcsmu_16):
A_17 := 2*snmu_17/(mu_17 + snmuxcsmu_17):
A_18 := 2*snmu_18/(mu_18 + snmuxcsmu_18):
A_19 := 2*snmu_19/(mu_19 + snmuxcsmu_19):
A_20 := 2*snmu_20/(mu_20 + snmuxcsmu_20):
A_21 := 2*snmu_21/(mu_21 + snmuxcsmu_21):
A_22 := 2*snmu_22/(mu_22 + snmuxcsmu_22):
A_23 := 2*snmu_23/(mu_23 + snmuxcsmu_23):
A_24 := 2*snmu_24/(mu_24 + snmuxcsmu_24):
A_25 := 2*snmu_25/(mu_25 + snmuxcsmu_25):
A_26 := 2*snmu_26/(mu_26 + snmuxcsmu_26):
A_27 := 2*snmu_27/(mu_27 + snmuxcsmu_27):
A_28 := 2*snmu_28/(mu_28 + snmuxcsmu_28):
A_29 := 2*snmu_29/(mu_29 + snmuxcsmu_29):
A_30 := 2*snmu_30/(mu_30 + snmuxcsmu_30):
hsum_0 := 2/15:
mfcorrhs := 0:
fmcInitialValue(x_1, 1/2):
fmcStrongLowerBound(x_1, 1/10):
fmcInitialValue(x_2, -1/2):
fmcStrongUpperBound(x_2, 0):
fmcInitialValue(x_3, 1/2):
fmcStrongLowerBound(x_3, 1/10):
fmcInitialValue(x_4, -1/2):
fmcStrongUpperBound(x_4, -1/10):
emx_1_1 := exp(-mu_1^2*x_1^2):
emx_1_2 := exp(-mu_2^2*x_1^2):
emx_1_3 := exp(-mu_3^2*x_1^2):
emx_1_4 := exp(-mu_4^2*x_1^2):
emx_1_5 := exp(-mu_5^2*x_1^2):
emx_1_6 := exp(-mu_6^2*x_1^2):
emx_1_7 := exp(-mu_7^2*x_1^2):
emx_1_8 := exp(-mu_8^2*x_1^2):
emx_1_9 := exp(-mu_9^2*x_1^2):
emx_1_10 := exp(-mu_10^2*x_1^2):
emx_1_11 := exp(-mu_11^2*x_1^2):
emx_1_12 := exp(-mu_12^2*x_1^2):
emx_1_13 := exp(-mu_13^2*x_1^2):
emx_1_14 := exp(-mu_14^2*x_1^2):
emx_1_15 := exp(-mu_15^2*x_1^2):
emx_1_16 := exp(-mu_16^2*x_1^2):
emx_1_17 := exp(-mu_17^2*x_1^2):
emx_1_18 := exp(-mu_18^2*x_1^2):
emx_1_19 := exp(-mu_19^2*x_1^2):
emx_1_20 := exp(-mu_20^2*x_1^2):
emx_1_21 := exp(-mu_21^2*x_1^2):
emx_1_22 := exp(-mu_22^2*x_1^2):
emx_1_23 := exp(-mu_23^2*x_1^2):
emx_1_24 := exp(-mu_24^2*x_1^2):
emx_1_25 := exp(-mu_25^2*x_1^2):
emx_1_26 := exp(-mu_26^2*x_1^2):
emx_1_27 := exp(-mu_27^2*x_1^2):
emx_1_28 := exp(-mu_28^2*x_1^2):
emx_1_29 := exp(-mu_29^2*x_1^2):
emx_1_30 := exp(-mu_30^2*x_1^2):
emx_2_1 := exp(-mu_1^2*x_2^2):
emx_2_2 := exp(-mu_2^2*x_2^2):
emx_2_3 := exp(-mu_3^2*x_2^2):
emx_2_4 := exp(-mu_4^2*x_2^2):
emx_2_5 := exp(-mu_5^2*x_2^2):
emx_2_6 := exp(-mu_6^2*x_2^2):
emx_2_7 := exp(-mu_7^2*x_2^2):
emx_2_8 := exp(-mu_8^2*x_2^2):
emx_2_9 := exp(-mu_9^2*x_2^2):
emx_2_10 := exp(-mu_10^2*x_2^2):
emx_2_11 := exp(-mu_11^2*x_2^2):
emx_2_12 := exp(-mu_12^2*x_2^2):
emx_2_13 := exp(-mu_13^2*x_2^2):
emx_2_14 := exp(-mu_14^2*x_2^2):
emx_2_15 := exp(-mu_15^2*x_2^2):
emx_2_16 := exp(-mu_16^2*x_2^2):
emx_2_17 := exp(-mu_17^2*x_2^2):
emx_2_18 := exp(-mu_18^2*x_2^2):
emx_2_19 := exp(-mu_19^2*x_2^2):
emx_2_20 := exp(-mu_20^2*x_2^2):
emx_2_21 := exp(-mu_21^2*x_2^2):
emx_2_22 := exp(-mu_22^2*x_2^2):
emx_2_23 := exp(-mu_23^2*x_2^2):
emx_2_24 := exp(-mu_24^2*x_2^2):
emx_2_25 := exp(-mu_25^2*x_2^2):
emx_2_26 := exp(-mu_26^2*x_2^2):
emx_2_27 := exp(-mu_27^2*x_2^2):
emx_2_28 := exp(-mu_28^2*x_2^2):
emx_2_29 := exp(-mu_29^2*x_2^2):
emx_2_30 := exp(-mu_30^2*x_2^2):
emx_3_1 := exp(-mu_1^2*x_3^2):
emx_3_2 := exp(-mu_2^2*x_3^2):
emx_3_3 := exp(-mu_3^2*x_3^2):
emx_3_4 := exp(-mu_4^2*x_3^2):
emx_3_5 := exp(-mu_5^2*x_3^2):
emx_3_6 := exp(-mu_6^2*x_3^2):
emx_3_7 := exp(-mu_7^2*x_3^2):
emx_3_8 := exp(-mu_8^2*x_3^2):
emx_3_9 := exp(-mu_9^2*x_3^2):
emx_3_10 := exp(-mu_10^2*x_3^2):
emx_3_11 := exp(-mu_11^2*x_3^2):
emx_3_12 := exp(-mu_12^2*x_3^2):
emx_3_13 := exp(-mu_13^2*x_3^2):
emx_3_14 := exp(-mu_14^2*x_3^2):
emx_3_15 := exp(-mu_15^2*x_3^2):
emx_3_16 := exp(-mu_16^2*x_3^2):
emx_3_17 := exp(-mu_17^2*x_3^2):
emx_3_18 := exp(-mu_18^2*x_3^2):
emx_3_19 := exp(-mu_19^2*x_3^2):
emx_3_20 := exp(-mu_20^2*x_3^2):
emx_3_21 := exp(-mu_21^2*x_3^2):
emx_3_22 := exp(-mu_22^2*x_3^2):
emx_3_23 := exp(-mu_23^2*x_3^2):
emx_3_24 := exp(-mu_24^2*x_3^2):
emx_3_25 := exp(-mu_25^2*x_3^2):
emx_3_26 := exp(-mu_26^2*x_3^2):
emx_3_27 := exp(-mu_27^2*x_3^2):
emx_3_28 := exp(-mu_28^2*x_3^2):
emx_3_29 := exp(-mu_29^2*x_3^2):
emx_3_30 := exp(-mu_30^2*x_3^2):
emx_4_1 := exp(-mu_1^2*x_4^2):
emx_4_2 := exp(-mu_2^2*x_4^2):
emx_4_3 := exp(-mu_3^2*x_4^2):
emx_4_4 := exp(-mu_4^2*x_4^2):
emx_4_5 := exp(-mu_5^2*x_4^2):
emx_4_6 := exp(-mu_6^2*x_4^2):
emx_4_7 := exp(-mu_7^2*x_4^2):
emx_4_8 := exp(-mu_8^2*x_4^2):
emx_4_9 := exp(-mu_9^2*x_4^2):
emx_4_10 := exp(-mu_10^2*x_4^2):
emx_4_11 := exp(-mu_11^2*x_4^2):
emx_4_12 := exp(-mu_12^2*x_4^2):
emx_4_13 := exp(-mu_13^2*x_4^2):
emx_4_14 := exp(-mu_14^2*x_4^2):
emx_4_15 := exp(-mu_15^2*x_4^2):
emx_4_16 := exp(-mu_16^2*x_4^2):
emx_4_17 := exp(-mu_17^2*x_4^2):
emx_4_18 := exp(-mu_18^2*x_4^2):
emx_4_19 := exp(-mu_19^2*x_4^2):
emx_4_20 := exp(-mu_20^2*x_4^2):
emx_4_21 := exp(-mu_21^2*x_4^2):
emx_4_22 := exp(-mu_22^2*x_4^2):
emx_4_23 := exp(-mu_23^2*x_4^2):
emx_4_24 := exp(-mu_24^2*x_4^2):
emx_4_25 := exp(-mu_25^2*x_4^2):
emx_4_26 := exp(-mu_26^2*x_4^2):
emx_4_27 := exp(-mu_27^2*x_4^2):
emx_4_28 := exp(-mu_28^2*x_4^2):
emx_4_29 := exp(-mu_29^2*x_4^2):
emx_4_30 := exp(-mu_30^2*x_4^2):
rhoaux_4_1 := 1*emx_1_1*emx_2_1*emx_3_1*emx_4_1 - 2*emx_2_1*emx_3_1*emx_4_1 + 2*emx_3_1*emx_4_1 - 2*emx_4_1
+ 1:
rhoaux_4_2 := 1*emx_1_2*emx_2_2*emx_3_2*emx_4_2 - 2*emx_2_2*emx_3_2*emx_4_2 + 2*emx_3_2*emx_4_2 - 2*emx_4_2
+ 1:
rhoaux_4_3 := 1*emx_1_3*emx_2_3*emx_3_3*emx_4_3 - 2*emx_2_3*emx_3_3*emx_4_3 + 2*emx_3_3*emx_4_3 - 2*emx_4_3
+ 1:
rhoaux_4_4 := 1*emx_1_4*emx_2_4*emx_3_4*emx_4_4 - 2*emx_2_4*emx_3_4*emx_4_4 + 2*emx_3_4*emx_4_4 - 2*emx_4_4
+ 1:
rhoaux_4_5 := 1*emx_1_5*emx_2_5*emx_3_5*emx_4_5 - 2*emx_2_5*emx_3_5*emx_4_5 + 2*emx_3_5*emx_4_5 - 2*emx_4_5
+ 1:
rhoaux_4_6 := 1*emx_1_6*emx_2_6*emx_3_6*emx_4_6 - 2*emx_2_6*emx_3_6*emx_4_6 + 2*emx_3_6*emx_4_6 - 2*emx_4_6
+ 1:
rhoaux_4_7 := 1*emx_1_7*emx_2_7*emx_3_7*emx_4_7 - 2*emx_2_7*emx_3_7*emx_4_7 + 2*emx_3_7*emx_4_7 - 2*emx_4_7
+ 1:
rhoaux_4_8 := 1*emx_1_8*emx_2_8*emx_3_8*emx_4_8 - 2*emx_2_8*emx_3_8*emx_4_8 + 2*emx_3_8*emx_4_8 - 2*emx_4_8
+ 1:
rhoaux_4_9 := 1*emx_1_9*emx_2_9*emx_3_9*emx_4_9 - 2*emx_2_9*emx_3_9*emx_4_9 + 2*emx_3_9*emx_4_9 - 2*emx_4_9
+ 1:
rhoaux_4_10 := 1*emx_1_10*emx_2_10*emx_3_10*emx_4_10 - 2*emx_2_10*emx_3_10*emx_4_10 + 2*emx_3_10*emx_4_10 -
2*emx_4_10 + 1:
rhoaux_4_11 := 1*emx_1_11*emx_2_11*emx_3_11*emx_4_11 - 2*emx_2_11*emx_3_11*emx_4_11 + 2*emx_3_11*emx_4_11 -
2*emx_4_11 + 1:
rhoaux_4_12 := 1*emx_1_12*emx_2_12*emx_3_12*emx_4_12 - 2*emx_2_12*emx_3_12*emx_4_12 + 2*emx_3_12*emx_4_12 -
2*emx_4_12 + 1:
rhoaux_4_13 := 1*emx_1_13*emx_2_13*emx_3_13*emx_4_13 - 2*emx_2_13*emx_3_13*emx_4_13 + 2*emx_3_13*emx_4_13 -
2*emx_4_13 + 1:
rhoaux_4_14 := 1*emx_1_14*emx_2_14*emx_3_14*emx_4_14 - 2*emx_2_14*emx_3_14*emx_4_14 + 2*emx_3_14*emx_4_14 -
2*emx_4_14 + 1:
rhoaux_4_15 := 1*emx_1_15*emx_2_15*emx_3_15*emx_4_15 - 2*emx_2_15*emx_3_15*emx_4_15 + 2*emx_3_15*emx_4_15 -
2*emx_4_15 + 1:
rhoaux_4_16 := 1*emx_1_16*emx_2_16*emx_3_16*emx_4_16 - 2*emx_2_16*emx_3_16*emx_4_16 + 2*emx_3_16*emx_4_16 -
2*emx_4_16 + 1:
rhoaux_4_17 := 1*emx_1_17*emx_2_17*emx_3_17*emx_4_17 - 2*emx_2_17*emx_3_17*emx_4_17 + 2*emx_3_17*emx_4_17 -
2*emx_4_17 + 1:
rhoaux_4_18 := 1*emx_1_18*emx_2_18*emx_3_18*emx_4_18 - 2*emx_2_18*emx_3_18*emx_4_18 + 2*emx_3_18*emx_4_18 -
2*emx_4_18 + 1:
rhoaux_4_19 := 1*emx_1_19*emx_2_19*emx_3_19*emx_4_19 - 2*emx_2_19*emx_3_19*emx_4_19 + 2*emx_3_19*emx_4_19 -
2*emx_4_19 + 1:
rhoaux_4_20 := 1*emx_1_20*emx_2_20*emx_3_20*emx_4_20 - 2*emx_2_20*emx_3_20*emx_4_20 + 2*emx_3_20*emx_4_20 -
2*emx_4_20 + 1:
rhoaux_4_21 := 1*emx_1_21*emx_2_21*emx_3_21*emx_4_21 - 2*emx_2_21*emx_3_21*emx_4_21 + 2*emx_3_21*emx_4_21 -
2*emx_4_21 + 1:
rhoaux_4_22 := 1*emx_1_22*emx_2_22*emx_3_22*emx_4_22 - 2*emx_2_22*emx_3_22*emx_4_22 + 2*emx_3_22*emx_4_22 -
2*emx_4_22 + 1:
rhoaux_4_23 := 1*emx_1_23*emx_2_23*emx_3_23*emx_4_23 - 2*emx_2_23*emx_3_23*emx_4_23 + 2*emx_3_23*emx_4_23 -
2*emx_4_23 + 1:
rhoaux_4_24 := 1*emx_1_24*emx_2_24*emx_3_24*emx_4_24 - 2*emx_2_24*emx_3_24*emx_4_24 + 2*emx_3_24*emx_4_24 -
2*emx_4_24 + 1:
rhoaux_4_25 := 1*emx_1_25*emx_2_25*emx_3_25*emx_4_25 - 2*emx_2_25*emx_3_25*emx_4_25 + 2*emx_3_25*emx_4_25 -
2*emx_4_25 + 1:
rhoaux_4_26 := 1*emx_1_26*emx_2_26*emx_3_26*emx_4_26 - 2*emx_2_26*emx_3_26*emx_4_26 + 2*emx_3_26*emx_4_26 -
2*emx_4_26 + 1:
rhoaux_4_27 := 1*emx_1_27*emx_2_27*emx_3_27*emx_4_27 - 2*emx_2_27*emx_3_27*emx_4_27 + 2*emx_3_27*emx_4_27 -
2*emx_4_27 + 1:
rhoaux_4_28 := 1*emx_1_28*emx_2_28*emx_3_28*emx_4_28 - 2*emx_2_28*emx_3_28*emx_4_28 + 2*emx_3_28*emx_4_28 -
2*emx_4_28 + 1:
rhoaux_4_29 := 1*emx_1_29*emx_2_29*emx_3_29*emx_4_29 - 2*emx_2_29*emx_3_29*emx_4_29 + 2*emx_3_29*emx_4_29 -
2*emx_4_29 + 1:
rhoaux_4_30 := 1*emx_1_30*emx_2_30*emx_3_30*emx_4_30 - 2*emx_2_30*emx_3_30*emx_4_30 + 2*emx_3_30*emx_4_30 -
2*emx_4_30 + 1:
rho_1 := (-1)*rhoaux_4_1/mu_1^2:
rho_2 := (-1)*rhoaux_4_2/mu_2^2:
rho_3 := (-1)*rhoaux_4_3/mu_3^2:
rho_4 := (-1)*rhoaux_4_4/mu_4^2:
rho_5 := (-1)*rhoaux_4_5/mu_5^2:
rho_6 := (-1)*rhoaux_4_6/mu_6^2:
rho_7 := (-1)*rhoaux_4_7/mu_7^2:
rho_8 := (-1)*rhoaux_4_8/mu_8^2:
rho_9 := (-1)*rhoaux_4_9/mu_9^2:
rho_10 := (-1)*rhoaux_4_10/mu_10^2:
rho_11 := (-1)*rhoaux_4_11/mu_11^2:
rho_12 := (-1)*rhoaux_4_12/mu_12^2:
rho_13 := (-1)*rhoaux_4_13/mu_13^2:
rho_14 := (-1)*rhoaux_4_14/mu_14^2:
rho_15 := (-1)*rhoaux_4_15/mu_15^2:
rho_16 := (-1)*rhoaux_4_16/mu_16^2:
rho_17 := (-1)*rhoaux_4_17/mu_17^2:
rho_18 := (-1)*rhoaux_4_18/mu_18^2:
rho_19 := (-1)*rhoaux_4_19/mu_19^2:
rho_20 := (-1)*rhoaux_4_20/mu_20^2:
rho_21 := (-1)*rhoaux_4_21/mu_21^2:
rho_22 := (-1)*rhoaux_4_22/mu_22^2:
rho_23 := (-1)*rhoaux_4_23/mu_23^2:
rho_24 := (-1)*rhoaux_4_24/mu_24^2:
rho_25 := (-1)*rhoaux_4_25/mu_25^2:
rho_26 := (-1)*rhoaux_4_26/mu_26^2:
rho_27 := (-1)*rhoaux_4_27/mu_27^2:
rho_28 := (-1)*rhoaux_4_28/mu_28^2:
rho_29 := (-1)*rhoaux_4_29/mu_29^2:
rho_30 := (-1)*rhoaux_4_30/mu_30^2:
aux1_1 := A_1^2*rhoaux_4_1^2:
aux1_2 := A_2^2*rhoaux_4_2^2:
aux1_3 := A_3^2*rhoaux_4_3^2:
aux1_4 := A_4^2*rhoaux_4_4^2:
aux1_5 := A_5^2*rhoaux_4_5^2:
aux1_6 := A_6^2*rhoaux_4_6^2:
aux1_7 := A_7^2*rhoaux_4_7^2:
aux1_8 := A_8^2*rhoaux_4_8^2:
aux1_9 := A_9^2*rhoaux_4_9^2:
aux1_10 := A_10^2*rhoaux_4_10^2:
aux1_11 := A_11^2*rhoaux_4_11^2:
aux1_12 := A_12^2*rhoaux_4_12^2:
aux1_13 := A_13^2*rhoaux_4_13^2:
aux1_14 := A_14^2*rhoaux_4_14^2:
aux1_15 := A_15^2*rhoaux_4_15^2:
aux1_16 := A_16^2*rhoaux_4_16^2:
aux1_17 := A_17^2*rhoaux_4_17^2:
aux1_18 := A_18^2*rhoaux_4_18^2:
aux1_19 := A_19^2*rhoaux_4_19^2:
aux1_20 := A_20^2*rhoaux_4_20^2:
aux1_21 := A_21^2*rhoaux_4_21^2:
aux1_22 := A_22^2*rhoaux_4_22^2:
aux1_23 := A_23^2*rhoaux_4_23^2:
aux1_24 := A_24^2*rhoaux_4_24^2:
aux1_25 := A_25^2*rhoaux_4_25^2:
aux1_26 := A_26^2*rhoaux_4_26^2:
aux1_27 := A_27^2*rhoaux_4_27^2:
aux1_28 := A_28^2*rhoaux_4_28^2:
aux1_29 := A_29^2*rhoaux_4_29^2:
aux1_30 := A_30^2*rhoaux_4_30^2:
aux3_1 := A_1*rho_1:
aux3_2 := A_2*rho_2:
aux3_3 := A_3*rho_3:
aux3_4 := A_4*rho_4:
aux3_5 := A_5*rho_5:
aux3_6 := A_6*rho_6:
aux3_7 := A_7*rho_7:
aux3_8 := A_8*rho_8:
aux3_9 := A_9*rho_9:
aux3_10 := A_10*rho_10:
aux3_11 := A_11*rho_11:
aux3_12 := A_12*rho_12:
aux3_13 := A_13*rho_13:
aux3_14 := A_14*rho_14:
aux3_15 := A_15*rho_15:
aux3_16 := A_16*rho_16:
aux3_17 := A_17*rho_17:
aux3_18 := A_18*rho_18:
aux3_19 := A_19*rho_19:
aux3_20 := A_20*rho_20:
aux3_21 := A_21*rho_21:
aux3_22 := A_22*rho_22:
aux3_23 := A_23*rho_23:
aux3_24 := A_24*rho_24:
aux3_25 := A_25*rho_25:
aux3_26 := A_26*rho_26:
aux3_27 := A_27*rho_27:
aux3_28 := A_28*rho_28:
aux3_29 := A_29*rho_29:
aux3_30 := A_30*rho_30:
hsum_1 := hsum_0 + aux1_1*aux2_1 + aux3_1*aux4_1:
hsum_2 := hsum_1 + aux1_2*aux2_2 + aux3_2*aux4_2:
hsum_3 := hsum_2 + aux1_3*aux2_3 + aux3_3*aux4_3:
hsum_4 := hsum_3 + aux1_4*aux2_4 + aux3_4*aux4_4:
hsum_5 := hsum_4 + aux1_5*aux2_5 + aux3_5*aux4_5:
hsum_6 := hsum_5 + aux1_6*aux2_6 + aux3_6*aux4_6:
hsum_7 := hsum_6 + aux1_7*aux2_7 + aux3_7*aux4_7:
hsum_8 := hsum_7 + aux1_8*aux2_8 + aux3_8*aux4_8:
hsum_9 := hsum_8 + aux1_9*aux2_9 + aux3_9*aux4_9:
hsum_10 := hsum_9 + aux1_10*aux2_10 + aux3_10*aux4_10:
hsum_11 := hsum_10 + aux1_11*aux2_11 + aux3_11*aux4_11:
hsum_12 := hsum_11 + aux1_12*aux2_12 + aux3_12*aux4_12:
hsum_13 := hsum_12 + aux1_13*aux2_13 + aux3_13*aux4_13:
hsum_14 := hsum_13 + aux1_14*aux2_14 + aux3_14*aux4_14:
hsum_15 := hsum_14 + aux1_15*aux2_15 + aux3_15*aux4_15:
hsum_16 := hsum_15 + aux1_16*aux2_16 + aux3_16*aux4_16:
hsum_17 := hsum_16 + aux1_17*aux2_17 + aux3_17*aux4_17:
hsum_18 := hsum_17 + aux1_18*aux2_18 + aux3_18*aux4_18:
hsum_19 := hsum_18 + aux1_19*aux2_19 + aux3_19*aux4_19:
hsum_20 := hsum_19 + aux1_20*aux2_20 + aux3_20*aux4_20:
hsum_21 := hsum_20 + aux1_21*aux2_21 + aux3_21*aux4_21:
hsum_22 := hsum_21 + aux1_22*aux2_22 + aux3_22*aux4_22:
hsum_23 := hsum_22 + aux1_23*aux2_23 + aux3_23*aux4_23:
hsum_24 := hsum_23 + aux1_24*aux2_24 + aux3_24*aux4_24:
hsum_25 := hsum_24 + aux1_25*aux2_25 + aux3_25*aux4_25:
hsum_26 := hsum_25 + aux1_26*aux2_26 + aux3_26*aux4_26:
hsum_27 := hsum_26 + aux1_27*aux2_27 + aux3_27*aux4_27:
hsum_28 := hsum_27 + aux1_28*aux2_28 + aux3_28*aux4_28:
hsum_29 := hsum_28 + aux1_29*aux2_29 + aux3_29*aux4_29:
hsum_30 := hsum_29 + aux1_30*aux2_30 + aux3_30*aux4_30:
h := hsum_30:
mfcorrr := (-1)*x_2 + (x_3 - 8/10)^2:
myminfun := x_1^2 + x_2^2 + x_3^2 + x_4^2 + mfcorrr:
myabsdevnod0_0 := myownabs(myminfun - 1.362656814889885):
myreldevnod0_0 := myownabs(myminfun/1.362656814889885 - 1):
myabsdevnod0_1 := myownabs(x_1 - 0.717050023543273):
myreldevnod0_1 := myownabs(x_1/0.717050023543273 - 1):
myabsdevnod0_2 := myownabs(x_2):
myreldevnod0_2 := myownabs(x_2):
myabsdevnod0_3 := myownabs(x_3 - 0.8):
myreldevnod0_3 := myownabs(x_3/0.8 - 1):
myabsdevnod0_4 := myownabs(x_4 + 0.456613708320804):
myreldevnod0_4 := myownabs(x_4/0.456613708320804 + 1):
myabsdevnod1_0 := (1/2)*(myownabs(myabsdevnod0_0 - myabsdevnod0_1) + (myabsdevnod0_0 + myabsdevnod0_1)):
myreldevnod1_0 := (1/2)*(myownabs(myreldevnod0_0 - myreldevnod0_1) + (myreldevnod0_0 + myreldevnod0_1)):
myabsdevnod1_2 := (1/2)*(myownabs(myabsdevnod0_2 - myabsdevnod0_3) + (myabsdevnod0_2 + myabsdevnod0_3)):
myreldevnod1_2 := (1/2)*(myownabs(myreldevnod0_2 - myreldevnod0_3) + (myreldevnod0_2 + myreldevnod0_3)):
myabsdevnod1_4 := myabsdevnod0_4:
myreldevnod1_4 := myreldevnod0_4:
myabsdevnod2_0 := (1/2)*(myownabs(myabsdevnod1_0 - myabsdevnod1_2) + (myabsdevnod1_0 + myabsdevnod1_2)):
myreldevnod2_0 := (1/2)*(myownabs(myreldevnod1_0 - myreldevnod1_2) + (myreldevnod1_0 + myreldevnod1_2)):
myabsdevnod2_4 := myabsdevnod1_4:
myreldevnod2_4 := myreldevnod1_4:
myabsdevnod3_0 := (1/2)*(myownabs(myabsdevnod2_0 - myabsdevnod2_4) + (myabsdevnod2_0 + myabsdevnod2_4)):
myreldevnod3_0 := (1/2)*(myownabs(myreldevnod2_0 - myreldevnod2_4) + (myreldevnod2_0 + myreldevnod2_4)):
zmyabsdevmax := myabsdevnod3_0:
zmyreldevmax := myreldevnod3_0:
obj := myminfun:
fmcMinimum(obj):
fmcInequality(ci_1, 0.0001 - h):
fmcEscortFloat(x_1, x_1):
fmcEscortFloat(x_2, x_2):
fmcEscortFloat(x_3, x_3):
fmcEscortFloat(x_4, x_4):
fmcEscortFloat('myminfun', myminfun):
fmcEscortFloat('zmyabsdevmax', zmyabsdevmax):
fmcEscortFloat('zmyreldevmax', zmyreldevmax):
fmcControlMinimum(1, 0):
# End Model

Stephan K.H. Seidl