tp121.apm


Model tp121
  ! Source version 2

  ! Stephan K.H. Seidl
  ! Describes the artificial test problem `3 Balls in a Spheric Cage'.
  ! Created in 1988, this problem has been used over the years
  ! to study the behavior of NLO algorithms.

  ! Traditional initialization, not feasible, rcage = 1/10.

  Parameters
    mypi = 4*atan(1)
    c2 = 2
    c3 = 3
    c10 = 10
    c20 = 20
    c1000 = 1000
    c100000 = 100000
    g = 980665/c100000
    masstot = 50/c1000
    rrough = (masstot/((2700 + 19300 + 7860)*(4/c3)*mypi))^(1/c3)
    rcage = 1/c10
  End Parameters

  Variables
    ! Benevolent initialization, feasible.
  ! x[ 1] = rrough
  ! x[ 2] = rrough
  ! x[ 3] = rrough
  ! x[ 4] = (-1)/c20
  ! x[ 5] = 1/c20
  ! x[ 6] = (-1)/c20
  ! x[ 7] = (-1)/c20
  ! x[ 8] = (-1)*rrough/c10
  ! x[ 9] = 1/c20
  ! x[10] = 1/c10
  ! x[11] = 1/c10
  ! x[12] = 1/c10
    ! Traditional initialization, not feasible.
    x[ 1] = 1.020462601383630
    x[ 2] = 1.067249920905851
    x[ 3] = -10
    x[ 4] = 1.056302685455057
    x[ 5] = 0.9888734173342870
    x[ 6] = 1.030255683555398
    x[ 7] = 1.002173322039949
    x[ 8] = 0.9898553374984422
    x[ 9] = 1.074494882526627
    x[10] = 1.095044196509762
    x[11] = -1000
    x[12] = 1.089828605856584
    obj
  End Variables

  Intermediates
    massa =  2700*(4/c3)*mypi*x[1]^3
    massg = 19300*(4/c3)*mypi*x[2]^3
    massi =  7860*(4/c3)*mypi*x[3]^3
    distac = sqrt(x[4]^2 + x[7]^2 + (x[10] - rcage)^2)
    distgc = sqrt(x[5]^2 + x[8]^2 + (x[11] - rcage)^2)
    distic = sqrt(x[6]^2 + x[9]^2 + (x[12] - rcage)^2)
    distag = sqrt((x[4] - x[5])^2 + (x[7] - x[8])^2 + (x[10] - x[11])^2)
    distgi = sqrt((x[5] - x[6])^2 + (x[8] - x[9])^2 + (x[11] - x[12])^2)
    distia = sqrt((x[6] - x[4])^2 + (x[9] - x[7])^2 + (x[12] - x[10])^2)
    rsumag = x[1] + x[2]
    rsumgi = x[2] + x[3]
    rsumia = x[3] + x[1]
    mf = g*(massa*x[10] + massg*x[11] + massi*x[12])
    c[ 1] = x[8] + x[2]/c10
    c[ 2] = massa + massg + massi - masstot
    c[ 3] = (rcage - x[1]) - distac
    c[ 4] = (rcage - x[2]) - distgc
    c[ 5] = (rcage - x[3]) - distic
    c[ 6] = distag - rsumag
    c[ 7] = distgi - rsumgi
    c[ 8] = distia - rsumia
    c[ 9] = (-1)*(x[4] + x[1]/c10)
    c[10] = x[5] - x[2]/c10
    c[11] = (-1)*(x[6] + x[3]/c10)
    c[12] = (-1)*(x[7] + x[1]/c10)
    c[13] = x[9] - x[3]/c10
    c[14] = x[1] - x[2]/c2
    c[15] = x[1] - x[3]/c2
    c[16] = x[2] - x[1]/c2
    c[17] = x[2] - x[3]/c2
    c[18] = x[3] - x[1]/c2
    c[19] = x[3] - x[2]/c2
  End Intermediates

  Equations
    c[1:2] = 0
    c[3:19] >= 0

    obj = mf

    ! best known objective = 0.003748448926892757
    ! begin of best known solution
    ! x[ 1] =  0.006880225167214264
    ! x[ 2] =  0.007557877754559033
    ! x[ 3] =  0.007025116248247118
    ! x[ 4] = -0.008109269192985781
    ! x[ 5] =  0.003933807693760132
    ! x[ 6] = -0.009411021460678573
    ! x[ 7] = -0.008719650850600085
    ! x[ 8] = -0.0007557877754559033
    ! x[ 9] =  0.005124624533619279
    ! x[10] =  0.007644708288544523
    ! x[11] =  0.007644708288544523
    ! x[12] =  0.007644708288544523
    ! end of best known solution
  End Equations
End Model

Stephan K.H. Seidl