tp114.apm
Model tp114
! Source version 1
Parameters
a = .99
b = .9
End Parameters
Variables
x[ 1] = 1745, >= .00001, <= 2000
x[ 2] = 12000, >= .00001, <= 16000
x[ 3] = 110, >= .00001, <= 120
x[ 4] = 3048, >= .00001, <= 5000
x[ 5] = 1974, >= .00001, <= 2000
x[ 6] = 89.2, >= 85, <= 93
x[ 7] = 92.8, >= 90, <= 95
x[ 8] = 8, >= 3, <= 12
x[ 9] = 3.6, >= 1.2, <= 4
x[10] = 145, >= 145, <= 162
obj
End Variables
Intermediates
g[ 1] = 35.82 - .222*x[10] - b*x[9]
g[ 2] = (-133) + 3*x[7] - a*x[10]
g[ 3] = (-1)*g[1] + x[9]*(1/b - b)
g[ 4] = (-1)*g[2] + (1/a - a)*x[10]
g[ 5] = 1.12*x[1] + .13167*x[1]*x[8] &
- .00667*x[1]*x[8]^2 - a*x[4]
g[ 6] = 57.425 + 1.098*x[8] - .038*x[8]^2 &
+ .325*x[6] - a*x[7]
g[ 7] = (-1)*g[5] + (1/a - a)*x[4]
g[ 8] = (-1)*g[6] + (1/a - a)*x[7]
g[ 9] = 1.22*x[4] - x[1] - x[5]
g[10] = 98000*x[3]/(x[4]*x[9] + 1000*x[3]) &
- x[6]
g[11] = (x[2] + x[5])/x[1] - x[8]
mf = 5.04*x[1] + .035*x[2] + 10*x[3] &
+ 3.36*x[5] - .063*x[4]*x[7]
End Intermediates
Equations
g[1: 8] >= 0
g[9:11] = 0
obj = mf
! best known objective = -1768.806963716244
! begin of best known solution
! x[ 1] = 1698.094765188968
! x[ 2] = 15818.61492418296
! x[ 3] = 54.10268233324735
! x[ 4] = 3031.225217368007
! x[ 5] = 2000
! x[ 6] = 90.11542219898668
! x[ 7] = 95
! x[ 8] = 10.49329830670555
! x[ 9] = 1.561636363636364
! x[10] = 153.5353535353535
! end of best known solution
End Equations
End Model
Stephan K.H. Seidl