tp103.apm
Model tp103
! Source version 1
Parameters
a = 1/2
End Parameters
Variables
x[1:6] = 6, >= 1/10, <= 10
x[7:7] = 6, >= 1/100, <= 10
obj
End Variables
Intermediates
c[1] = 1 &
- (1/2)*x[1]^(1/2)*x[3]^(-1)*x[6]^(-2)*x[7] &
- (7/10)*x[1]^3*x[2]*x[3]^(-2)*x[6]*x[7]^(1/2) &
- (2/10)*x[2]^(-1)*x[3]*x[4]^(-1/2)*x[6]^(2/3)* &
x[7]^(1/4)
c[2] = 1 &
- (13/10)*x[1]^(-1/2)*x[2]*x[3]^(-1)*x[5]^(-1)* &
x[6] &
- (8/10)*x[3]*x[4]^(-1)*x[5]^(-1)*x[6]^2 &
- (31/10)*x[1]^(-1)*x[2]^(1/2)*x[4]^(-2)* &
x[5]^(-1)*x[6]^(1/3)
c[3] = 1 &
- 2*x[1]*x[3]^(-3/2)*x[5]*x[6]^(-1)*x[7]^(1/3) &
- (1/10)*x[2]*x[3]^(-1/2)*x[5]*x[6]^(-1)* &
x[7]^(-1/2) &
- x[1]^(-1)*x[2]*x[3]^(1/2)*x[5] &
- (65/100)*x[2]^(-2)*x[3]*x[5]*x[6]^(-1)*x[7]
c[4] = 1 &
- (2/10)*x[1]^(-2)*x[2]*x[4]^(-1)*x[5]^(1/2)* &
x[7]^(1/3) &
- (3/10)*x[1]^(1/2)*x[2]^2*x[3]*x[4]^(1/3)* &
x[7]^(1/4)*x[5]^(-2/3) &
- (4/10)*x[1]^(-3)*x[2]^(-2)*x[3]*x[5]* &
x[7]^(3/4) &
- (1/2)*x[3]^(-2)*x[4]*x[7]^(1/2)
mf = 10*x[1]*x[2]^(-1)*x[4]^2*x[6]^(-3)*x[7]^a &
+ 15*x[1]^(-1)*x[2]^(-2)*x[3]*x[4]*x[5]^(-1)* &
x[7]^(-1/2) &
+ 20*x[1]^(-2)*x[2]*x[4]^(-1)*x[5]^(-2)*x[6] &
+ 25*x[1]^2*x[2]^2*x[3]^(-1)*x[5]^(1/2)* &
x[6]^(-2)*x[7]
c[5] = mf - 100
c[6] = 3000 - mf
End Intermediates
Equations
c[1:6] >= 0
obj = mf
! best known objective = 543.6679584662806
! begin of best known solution
! x[1] = 4.394104510526405
! x[2] = 0.8544687387974248
! x[3] = 2.843230313950895
! x[4] = 3.399978667686558
! x[5] = 0.7229261330073024
! x[6] = 0.8704063818044572
! x[7] = 0.02463882632722851
! end of best known solution
End Equations
End Model
Stephan K.H. Seidl