tp085.apm
Model tp085
! Source version 1
Parameters
coefy5a = .004324 ! from PROB.FOR
coefy5b = .00423 ! from H+S, seems to be a typo
coefy5 = coefy5a ! my quite clear decision from data below
a[ 2] = 17.505
a[ 3] = 11.275
a[ 4] = 214.228
a[ 5] = 7.458
a[ 6] = .961
a[ 7] = 1.612
a[ 8] = .146
a[ 9] = 107.99
a[10] = 922.693
a[11] = 926.832
a[12] = 18.766
a[13] = 1072.163
a[14] = 8961.448
a[15] = .063
a[16] = 71084.33
a[17] = 2802713
b[ 2] = 1053.6667
b[ 3] = 35.03
b[ 4] = 665.585
b[ 5] = 584.463
b[ 6] = 265.916
b[ 7] = 7.046
b[ 8] = .222
b[ 9] = 273.366
b[10] = 1286.105
b[11] = 1444.046
b[12] = 537.141
b[13] = 3247.039
b[14] = 26844.086
b[15] = .386
b[16] = 140000
b[17] = 12146108
c[10] = 123/7523
End Parameters
Variables
x[1] = 900, >= 704.4148, <= 906.3855
x[2] = 80, >= 68.6, <= 288.88
x[3] = 115, >= 0, <= 134.75
x[4] = 267, >= 193, <= 287.0966
x[5] = 27, >= 25, <= 84.1988
obj
End Variables
Intermediates
y[ 1] = x[2] + x[3] + 41.6
c[ 1] = .024*x[4] - 4.62
y[ 2] = 12.5/c[1] + 12
c[ 2] = .0003535*x[1]^2 + .5311*x[1] &
+ .08705*y[2]*x[1]
c[ 3] = .052*x[1] + 78 + .002377*y[2]*x[1]
y[ 3] = c[2]/c[3]
y[ 4] = 19*y[3]
c[ 4] = .04782*(x[1] - y[3]) &
+ .1956*(x[1] - y[3])^2/x[2] &
+ .6376*y[4] + 1.594*y[3]
c[ 5] = 100*x[2]
c[ 6] = x[1] - y[3] - y[4]
c[ 7] = .95 - c[4]/c[5]
y[ 5] = c[6]*c[7]
y[ 6] = x[1] - y[5] - y[4] - y[3]
c[ 8] = (y[5] + y[4])*.995
y[ 7] = c[8]/y[1]
y[ 8] = c[8]/3798
c[ 9] = y[7] - .0663*y[7]/y[8] - .3153
y[ 9] = 96.82/c[9] + .321*y[1]
y[10] = 1.29*y[5] + 1.258*y[4] &
+ 2.29*y[3] + 1.71*y[6]
y[11] = 1.71*x[1] - .452*y[4] + .58*y[3]
c[11] = (1.75*y[2])*(.995*x[1])
c[12] = .995*y[10] + 1998
y[12] = c[10]*x[1] + c[11]/c[12]
y[13] = c[12] - 1.75*y[2]
y[14] = 3623 + 64.4*x[2] + 58.4*x[3] &
+ 146312/(y[9] + x[5])
c[13] = .995*y[10] + 60.8*x[2] + 48*x[4] &
- .1121*y[14] - 5095
y[15] = y[13]/c[13]
y[16] = 148000 - 331000*y[15] + 40*y[13] &
- 61*y[15]*y[13]
c[14] = 2324*y[10] - 28740000*y[2]
y[17] = 14130000 - 1328*y[10] &
- 531*y[11] + c[14]/c[12]
c[15] = y[13]/y[15] - y[13]/.52
c[16] = 1.104 - .72*y[15]
c[17] = y[9] + x[5]
End Intermediates
Equations
1.5*x[2] - x[3] >= 0
y[1] - 213.1 >= 0
405.23 - y[1] >= 0
y[2:17] - a[2:17] >= 0
b[2:17] - y[2:17] >= 0
y[4] - (28/72)*y[5] >= 0
21 - 3496*y[2]/c[12] >= 0
62212/c[17] - 110.6 - y[1] >= 0
obj = (-5.843e-7)*y[17] + 1.17e-4*y[14] &
+ 2.358e-5*y[13] + 1.502e-6*y[16] &
+ .0321*y[12] + coefy5*y[5] &
+ 1.0e-4*c[15]/c[16] + 37.48*y[2]/c[12] + .1365
! best known objective = -1.905155258534784
! begin of best known solution
! x[1] = 705.1745370700908
! x[2] = 68.6
! x[3] = 102.9
! x[4] = 282.3249315936603
! x[5] = 37.58411642580555
! end of best known solution
! coefy5 = coefy5a ! best known objective = -1.905155258534784
! coefy5 = coefy5a ! begin of best known solution
! coefy5 = coefy5a ! x[1] = 705.1745370700908
! coefy5 = coefy5a ! x[2] = 68.6
! coefy5 = coefy5a ! x[3] = 102.9
! coefy5 = coefy5a ! x[4] = 282.3249315936603
! coefy5 = coefy5a ! x[5] = 37.58411642580555
! coefy5 = coefy5a ! end of best known solution
! coefy5 = coefy5b ! best known objective = -1.937598651888563
! coefy5 = coefy5b ! begin of best known solution
! coefy5 = coefy5b ! x[1] = 705.1745370700908
! coefy5 = coefy5b ! x[2] = 68.6
! coefy5 = coefy5b ! x[3] = 102.9
! coefy5 = coefy5b ! x[4] = 282.3249315936603
! coefy5 = coefy5b ! x[5] = 37.58411642580555
! coefy5 = coefy5b ! end of best known solution
End Equations
End Model
Stephan K.H. Seidl