tp084.apm
Model tp084
! Source version 1
Parameters
a[ 1] = -24345
a[ 2] = -8720288.849
a[ 3] = 150512.5253
a[ 4] = -156.6950325
a[ 5] = 476470.3222
a[ 6] = 729482.8271
a[ 7] = -145421.402
a[ 8] = 2931.1506
a[ 9] = -40.427932
a[10] = 5106.192
a[11] = 15711.36
a[12] = -155011.1084
a[13] = 4360.53352
a[14] = 12.9492344
a[15] = 10236.884
a[16] = 13176.786
a[17] = -326669.5104
a[18] = 7390.68412
a[19] = -27.8986976
a[20] = 16643.076
a[21] = 30988.146
End Parameters
Variables
x[1] = 2.52, >= 0, <= 1000
x[2] = 2, >= 1.2, <= 2.4
x[3] = 37.5, >= 20, <= 60
x[4] = 9.25, >= 9, <= 9.3
x[5] = 6.8, >= 6.5, <= 7
obj
End Variables
Intermediates
t[1] = a[ 7]*x[1] &
+ a[ 8]*x[1]*x[2] + a[ 9]*x[1]*x[3] &
+ a[10]*x[1]*x[4] + a[11]*x[1]*x[5]
t[2] = a[12]*x[1] &
+ a[13]*x[1]*x[2] + a[14]*x[1]*x[3] &
+ a[15]*x[1]*x[4] + a[16]*x[1]*x[5]
t[3] = a[17]*x[1] &
+ a[18]*x[1]*x[2] + a[19]*x[1]*x[3] &
+ a[20]*x[1]*x[4] + a[21]*x[1]*x[5]
End Intermediates
Equations
294000 - t[1] >= 0
t[1] >= 0
294000 - t[2] >= 0
t[2] >= 0
277200 - t[3] >= 0
t[3] >= 0
obj = (-1)*a[1] - a[2]*x[1] &
- a[3]*x[1]*x[2] - a[4]*x[1]*x[3] &
- a[5]*x[1]*x[4] - a[6]*x[1]*x[5]
! best known objective = -5280335.133214754
! begin of best known solution
! x[1] = 4.5374309746554
! x[2] = 2.4
! x[3] = 60
! x[4] = 9.3
! x[5] = 7
! end of best known solution
End Equations
End Model
Stephan K.H. Seidl