tp070.apm
Model tp070
! Source version 1
Parameters
e1 = -1 ! from PROB.FOR
e2 = 1 ! from H+S
d1 = 7.658 ! from PROB.FOR
d2 = 7.685 ! from H+S, seems to be a typo
e = e1 ! my quite clear decision from data below
d = d1 ! my quite clear decision from data below
yobs[ 1] = 0.00189
yobs[ 2] = 0.1038
yobs[ 3] = 0.268
yobs[ 4] = 0.506
yobs[ 5] = 0.577
yobs[ 6] = 0.604
yobs[ 7] = 0.725
yobs[ 8] = 0.898
yobs[ 9] = 0.947
yobs[10] = 0.845
yobs[11] = 0.702
yobs[12] = 0.528
yobs[13] = 0.385
yobs[14] = 0.257
yobs[15] = 0.159
yobs[16] = 0.0869
yobs[17] = 0.0453
yobs[18] = 0.01509
yobs[19] = 0.00189
c[1] = 0.1
c[2] = 1
c[3:19] = c[2:18] + 1
s[0] = 0
End Parameters
Variables
x[1] = 2, >= 0.00001, <= 100
x[2] = 4, >= 0.00001, <= 100
x[3] = 0.04, >= 0.00001, <= 1
x[4] = 2, >= 0.00001, <= 100
obj
End Variables
Intermediates
b = x[3] + (1 - x[3])*x[4]
ycal[1:19] = (1 + 1/(12*x[2]))^e * &
x[3]*b^x[2] * &
(x[2]/6.2832)^(1/2) * &
(c[1:19]/d)^(x[2] - 1) * &
exp(x[2] - b*c[1:19]*x[2]/7.658) &
+ (1 + 1/(12*x[1]))^e * &
(1 - x[3]) * &
(b/x[4])^x[1] * &
(x[1]/6.2832)^(1/2) * &
(c[1:19]/7.658)^(x[1] - 1) * &
exp(x[1] - b*c[1:19]*x[1]/(7.658*x[4]))
s[1:19] = s[0:18] + (yobs[1:19] - ycal[1:19])^2
mf = s[19]
End Intermediates
Equations
b >= 0
obj = mf
! best known objective = 0.007498463574427645
! begin of best known solution
! x[1] = 12.27697912756719
! x[2] = 4.631748162745852
! x[3] = 0.3128646302166193
! x[4] = 2.029282825337289
! end of best known solution
! e = e1, d = d1 ! best known objective = 0.007498463574427645
! e = e1, d = d1 ! begin of best known solution
! e = e1, d = d1 ! x[1] = 12.27697912756719
! e = e1, d = d1 ! x[2] = 4.631748162745852
! e = e1, d = d1 ! x[3] = 0.3128646302166193
! e = e1, d = d1 ! x[4] = 2.029282825337289
! e = e1, d = d1 ! end of best known solution
! e = e1, d = d2 ! best known objective = 0.007261547474631637
! e = e1, d = d2 ! begin of best known solution
! e = e1, d = d2 ! x[1] = 12.13773384939642
! e = e1, d = d2 ! x[2] = 4.82102598947378
! e = e1, d = d2 ! x[3] = 0.3031189915355265
! e = e1, d = d2 ! x[4] = 2.065299221807952
! e = e1, d = d2 ! end of best known solution
! e = e2, d = d1 ! best known objective = 0.0105735495312881
! e = e2, d = d1 ! begin of best known solution
! e = e2, d = d1 ! x[1] = 12.02765526345873
! e = e2, d = d1 ! x[2] = 4.634279639662956
! e = e2, d = d1 ! x[3] = 0.3022728725783973
! e = e2, d = d1 ! x[4] = 2.073537805595134
! e = e2, d = d1 ! end of best known solution
! e = e2, d = d2 ! best known objective = 0.009401973254465482
! e = e2, d = d2 ! begin of best known solution
! e = e2, d = d2 ! x[1] = 11.96577794613915
! e = e2, d = d2 ! x[2] = 4.769875049754542
! e = e2, d = d2 ! x[3] = 0.2981702392381668
! e = e2, d = d2 ! x[4] = 2.091469742396469
! e = e2, d = d2 ! end of best known solution
End Equations
End Model
Stephan K.H. Seidl