tp069r1.apm.m4
Model tp069r1
! Source version 4
! The present file has to be drawn through the m4 macro processor
! at first, with or without `-Drevisedhs'. With the macro
! defined, the feasible domain is reduced in comparison with the H+S
! one such that some unwanted dead corner is excluded.
ifdef(`revisedhs',`define(`stricths',0)',`define(`stricths',1)')
Parameters
a = 0.1
b = 1000
d = 1
n = 4
ubx2hs = 100
! phi0(x[2] = 6) > 9.8*10^(-10)
! phi0(x[2] = 5) > 2.8*10^( -7)
! phi0(x[2] = 4) > 3.1*10^( -5)
ubx2r = 3 ! phi0(x[2] = 3) > 1.3*10^( -3)
! phi0(x[2] = 2) > 2.2*10^( -2)
ubx2 = ifelse(stricths,1,`ubx2hs',`ubx2r')
End Parameters
Variables
x[1] = 1, >= 0.0001, <= 100
x[2] = 1, >= 0, <= ubx2
x[3] = 1, >= 0, <= 2
x[4] = 1, >= 0, <= 2
obj
End Variables
Intermediates
argn = (-1)*x[2] - d*sqrt(n)
arg0 = (-1)*x[2]
argp = (-1)*x[2] + d*sqrt(n)
phin = (1/2)*erfc((-1)*argn/sqrt(2))
phi0 = (1/2)*erfc((-1)*arg0/sqrt(2))
phip = (1/2)*erfc((-1)*argp/sqrt(2))
c[1] = x[3] - 2*phi0
c[2] = x[4] - phip - phin ! phin may vanish but not phip
num = b*(exp(x[1]) - 1) - x[3]
den = exp(x[1]) - 1 + x[4]
mf = (a*n - (num/den)*x[4])/x[1]
End Intermediates
Equations
c[1:2] = 0
obj = mf
! best known objective = -956.7128866500283
! begin of best known solution belonging to the revised case
! x[1] = 0.02937141742170559
! x[2] = 1.190253450406911
! x[3] = 0.2339467906674188
! x[4] = 0.7916678112438039
! end of best known solution belonging to the revised case
End Equations
End Model
Stephan K.H. Seidl